- #1

- 168

- 7

## Homework Statement

I have a coaxial cable with internal conductor of radius r1 and external conductor of radii r2 and r3. The material of the conductors has a conductivity ##\sigma_1##. Between the conductors there is a imperfect dielectric of conductivity ##\sigma_2##.

Consider the approximation that cable conductors are perfect (that is, cable voltage U is constant along the longitudinal coordinate z). Determine the evolution of the cable current intensity along z, a consequence of the leakage currents crossing the imperfect dielectric.

## Homework Equations

3. The Attempt at a Solution [/B]

So, my attempt was to use the fundamental equation div J = 0. By applying the divergence in cylindrical coordinates, you obtain ##\frac{dJ_y}{dy}=0##. I thought about now integrating over a section of the cable I obtain ##\frac{dI}{dy}=K##. My question now is how do I prove that this constant should be equal to GU, where G is the per-unit length transverse conductance of the dielectric medium.

I'm only having trouble in that last step of the derivation. Can someone help me?

<mentor edit: fix latex, add ##>

Last edited by a moderator: