I have found a general expression for the amplitude transmittance [tex](t)[/tex] of multilayer film stacks in the literature [1], but the author does not explain how to obtain the transmittance [tex](T)[/tex]. I looked up other references, and the closest I could find was the description of "an absorbing film on a transparent substrate" [2].(adsbygoogle = window.adsbygoogle || []).push({});

On page 756 of [2] there are expressions for transmittance:

[tex]T = \frac{n_3 \cos \theta _3}{n_1 \cos \theta _1} \left| t \right| ^2 \qquad \qquad \mbox{(TE)}[/tex]

[tex]T = \frac{(\cos \theta _3) / n_3}{(\cos \theta _1)/ n_1} \left| t \right| ^2 \qquad \qquad \mbox{(TM)}[/tex]

In other words, I'm trying to find the transmittance (using the amplitude transmittance value I already know) for a system that consists of a semi-infinite incidence medium (dielectric), many thin-films (absorbing), and a semi-infinite substrate (absorbing). In comparison, the reflectance is easy to find, because you just multiply the reflectivity by its complex conjugate; this is not the case. If you use the expressions above, replacing [tex](n_3)[/tex] and [tex](\theta_3)[/tex] by the substrate complex refractive index and the complex angle on the exit side, respectively, the results will be complex as well.

Any ideas? Thanks.

[1] J. Eastman,Surface scattering in optical interference coatings. PhD thesis, University of Rochester, 1974.

[2] M. Born and E. Wolf,Principles of Optics. Cambridge, UK: Cambridge University Press, 7th ed., 1999.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Transmittance of absorbing multilayer thin-films on an absorbing substrate

**Physics Forums | Science Articles, Homework Help, Discussion**