MHB Travis Henderson's Question: Optimizing f(x,y,z) with Constraint

Mathematics news on Phys.org
Hello Travis,

We are given the objective function:

$f(x,y,z)=x^4+y^4+z^4$

subject to the constraint:

$g(x,y,z)=x^2+y^2+z^2-1=0$

Using Lagrange multipliers, we obtain the system:

$4x^3=\lambda(2x)$

$4y^3=\lambda(2y)$

$4z^3=\lambda(2z)$

We see that 12 critical points arise when one of the variables is zero, and the other two are not zero. We see that the other two have to be equal, and their value is found from the constraint:

$y^2+x^2=1$

$x=y=\pm\frac{1}{\sqrt{2}}$

The 12 critical points come from the permutations of:

$\displaystyle \left(0,\pm\frac{1}{\sqrt{2}},\pm\frac{1}{\sqrt{2}} \right),\,\left(\pm\frac{1}{\sqrt{2}},0,\pm\frac{1}{\sqrt{2}} \right),\,\left(\pm\frac{1}{\sqrt{2}},\pm\frac{1}{\sqrt{2}},0 \right)$

The objective function's value is the same at each of the 12 points and is given by:

$f_1=\dfrac{1}{2}$

We also see that there are 6 critical values that arise from two of the varaibles being zero, and the other one being $\pm1$. They are:

$(0,0,\pm1),\,(0,\pm1,0),\,(\pm1,0,0)$

The objective function's value is the same at each of the 12 points and is given by:

$f_2=1$

Lastly the other 8 critical values comes from:

$x=y=z$

and substituting into the constraint, we find:

$x=y=z=\pm\dfrac{1}{\sqrt{3}}$

and so we have the 8 permutations of:

$f_3=f\left(\pm\dfrac{1}{\sqrt{3}},\pm\dfrac{1}{ \sqrt{3}},\pm\dfrac{1}{\sqrt{3}} \right)=\dfrac{1}{3}$

Hence we find:

$f_{\text{min}}=\dfrac{1}{3}$

$f_{\text{max}}=1$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top