Solving Trigonometric Integral Using Trig Substitution and Limits of Integration

Click For Summary
SUMMARY

The forum discussion focuses on solving the integral \(\int\frac{1}{t^3\sqrt{t^2-1}}dt\) with limits of integration from \(\sqrt{2}\) to \(2\) using trigonometric substitution. The substitution \(t = \sec(\theta)\) leads to the transformation of the integral into a more manageable form. The final steps involve evaluating the integral and converting back to the original variable, ultimately aiming to arrive at the answer \(\frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}\). Key mistakes identified include the incorrect application of the cosine double angle identity and the need to handle arcsine values outside their standard domain.

PREREQUISITES
  • Trigonometric substitution techniques in calculus
  • Understanding of integral calculus and limits of integration
  • Knowledge of trigonometric identities, particularly \(\cos^2(\theta)\) and the double angle formula
  • Familiarity with inverse trigonometric functions, specifically arcsine and arcsecant
NEXT STEPS
  • Study the application of trigonometric substitution in integrals
  • Learn about the properties and domains of inverse trigonometric functions
  • Practice evaluating integrals involving limits of integration and trigonometric identities
  • Explore the conversion of trigonometric limits back to original variables in integrals
USEFUL FOR

Students and educators in calculus, particularly those focusing on integral calculus and trigonometric methods. This discussion is beneficial for anyone looking to enhance their understanding of trigonometric integrals and substitution techniques.

3.141592654
Messages
85
Reaction score
0

Homework Statement



\int\frac{1}{t^3\sqrt{t^2-1}}dt with limits of integration [\sqrt{2}, 2]

Homework Equations





The Attempt at a Solution



Using trig. sub, I have sec \theta=t

dt=sec \theta tan \theta d \theta

\int\frac{1}{t^3\sqrt{t^2-1}}dt with limits of integration [\sqrt{2}, 2]

=\int\frac{sec \theta tan\theta d \theta}{(sec \theta)^3\sqrt{(sec \theta)^2-1}}

=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(sec \theta)^2-1}}

=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(tan \theta)^2}}

=\int\frac{tan \theta d \theta}{(sec \theta)^2tan \theta}

=\int\frac{d \theta}{(sec \theta)^2}

=\int\cos \theta^2 d\theta

=\int\frac{1+cos \theta}{2} d\theta

=\int\frac{1}{2}+\frac{cos \theta}{2} d\theta

=\frac{1}{2}\int d \theta +\frac{1}{2}\int cos \theta d \theta

=\frac{1}{2} \theta | +\frac{1}{2}sin \theta |

=\frac{1}{2}arcsec t +\frac{1}{2}t with limits [\sqrt{2},<br /> 2]

=\frac{1}{2}[arcsec (2)-arcsec (\sqrt{2})]+\frac{1}{2}[2-\sqrt{2}]

I need to get to the answer: \frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}. I don't see anything wrong up to this point so I guess my question is more of an algebra question, but how could I arrive at the stated answer?
 
Physics news on Phys.org
\cos^2\theta = \frac{1 + \cos{(2 \theta})}{2}
 
That was a silly mistake.

Alright, so:

\int (cos \theta)^2 d\theta

=\int \frac{1+cos(2\theta)}{2} d\theta

=\frac{1}{2}\int d\theta+\frac{1}{2}\int cos(2\theta)d\theta

=\frac{1}{2}\theta| +\frac{1}{2}\frac{sin(2\theta)}{2}|

=\frac{1}{2}\theta| +\frac{1}{4}sin(2\theta)|

=\frac{1}{2}\theta| +\frac{1}{4}(2sin\theta cos\theta)|

=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t})(\frac{1}{t})|

=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t^2})|

=\frac{1}{2}arcsin (t)| +\frac{1}{2}(1-\frac{1}{t^2})|

with limits of integration [\sqrt{2}, 2]

=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{2^2})-(1-\frac{1}{\sqrt{2}^2})

=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2})]

=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2}})]

=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{3}{8}-\frac{1}{4}

I'm not sure if this is correct, but how do I deal with the arcsin values since they aren't in the domain of the standard arcsin function? Lastly, how would I algebraically convert this to
<br /> \frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}<br />?

Thanks.
 
3.141592654 said:
=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t})(\frac{1}{t})|

=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t^2})|

=\frac{1}{2}arcsin (t)| +\frac{1}{2}(1-\frac{1}{t^2})|

with limits of integration [\sqrt{2}, 2]

=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{2^2})-(1-\frac{1}{\sqrt{2}^2})

=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2})]

=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2}})]

=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{3}{8}-\frac{1}{4}
Thanks.

You don't have to go through all this drama. You know that t=sec(theta), so cos(theta)=1/t. Just use this to convert the limits of integration to theta.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
28
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
Replies
3
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
6K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K