MHB Trigonometry Challenge: Can You Solve This Equation?

Click For Summary
The equation $\sin^7 x + \frac{1}{\sin^3 x} = \cos^7 x + \frac{1}{\cos^3 x$ leads to the conclusion that the only solution occurs when $\sin x = \cos x$, resulting in $x = \left(n + \frac{1}{4}\right)\pi$. Further analysis shows that dividing by $\sin x - \cos x$ leads to a transformed equation involving $z = \sin x \cos x$, which ultimately reveals no additional solutions. The derived polynomial in $z$ demonstrates that its absolute value remains less than 1, confirming the absence of further solutions. Thus, the only solutions for the original equation are those where $\sin x = \cos x$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $\sin^7 x+\dfrac{1}{\sin^3 x}=\cos^7 x+\dfrac{1}{\cos^3 x}$.
 
Mathematics news on Phys.org
anemone said:
Solve the equation $\sin^7 x+\dfrac{1}{\sin^3 x}=\cos^7 x+\dfrac{1}{\cos^3 x}$.
[sp]Multiply out the fractions: $$\sin^{10}\!x\cos^3\!x + \cos^3\!x = \cos^{10}\!x\sin^3\!x + \sin^3\!x,$$ $$\sin^{10}\!x\cos^3\!x - \cos^{10}\!x\sin^3\!x = \sin^3\!x - \cos^3\!x,$$ $$\sin^3\!x \cos^3\!x(\sin^7\!x - \cos^7\!x) = \sin^3x - \cos^3\!x,$$ $$\begin{aligned}\sin^3\!x &\cos^3\!x(\sin x - \cos x)(\sin^6\!x + \sin^5\!x\cos x + \sin^4\!x\cos^2\!x + \sin^3\!x\cos^3\!x + \sin^2\!x\cos^4\!x + \sin x\cos^5\!x + \cos^6\!x)\\ &= (\sin x - \cos x)(\sin^2\!x + \sin x\cos x + \cos^2\!x). \end{aligned}$$ One possibility (which in fact will turn out to be the only possibility) is $\sin x = \cos x$, or $x = \bigl(n+\frac14\bigr)\pi$. Otherwise, divide both sides by $\sin x - \cos x$: $$\sin^3\!x \cos^3\!x \bigl((\sin^4\!x + \cos^4\!x)(\sin^2\!x + \sin x\cos x + \cos^2\!x) + \sin^3\!x \cos^3\!x\bigr) = \sin^2\!x + \sin x\cos x + \cos^2\!x.$$ Now let $z = \sin x\cos x$. Notice that $z = \frac12\sin2x$, so that $|z| \leqslant \frac12.$ Also, $\sin^4\!x + \cos^4\!x = (\sin^2\!x+\cos^2\!x)^2 - 2\sin^2\!x\cos^2\!x = 1 - 2z^2$; and $ \sin^2\!x + \sin x\cos x + \cos^2\!x = 1+z.$ So the equation becomes $$z^3\bigl((1-2z^2)(1+z) + z^3\bigr) = 1+z,$$ $$z^6 - 2z^5 + z^4 + z^3 - z = 1.$$ But $|z^6 - 2z^5 + z^4 + z^3 - z| \leqslant |z|^6 + 2|z|^5 + |z|^4 + |z|^3 + |z| \leqslant \frac1{64} + \frac1{16} + \frac1{16} + \frac18 + \frac12 <1.$ So there are no solutions for $z$, showing that there are no further solutions for $x$.[/sp]
 
Last edited by a moderator:
Opalg said:
[sp]Multiply out the fractions: $$\sin^{10}\!x\cos^3\!x + \cos^3\!x = \cos^{10}\!x\sin^3\!x + \sin^3\!x,$$ $$\sin^{10}\!x\cos^3\!x - \cos^{10}\!x\sin^3\!x = \sin^3\!x - \cos^3\!x,$$ $$\sin^3\!x \cos^3\!x(\sin^7\!x - \cos^7\!x) = \sin^3x - \cos^3\!x,$$ $$\begin{aligned}\sin^3\!x &\cos^3\!x(\sin x - \cos x)(\sin^6\!x + \sin^5\!x\cos x + \sin^4\!x\cos^2\!x + \sin^3\!x\cos^3\!x + \sin^2\!x\cos^4\!x + \sin x\cos^5\!x + \cos^6\!x)\\ &= (\sin x - \cos x)(\sin^2\!x + \sin x\cos x + \cos^2\!x). \end{aligned}$$ One possibility (which in fact will turn out to be the only possibility) is $\sin x = \cos x$, or $x = \bigl(n+\frac14\bigr)\pi$. Otherwise, divide both sides by $\sin x - \cos x$: $$\sin^3\!x \cos^3\!x \bigl((\sin^4\!x + \cos^4\!x)(\sin^2\!x + \sin x\cos x + \cos^2\!x) + \sin^3\!x \cos^3\!x\bigr) = \sin^2\!x + \sin x\cos x + \cos^2\!x.$$ Now let $z = \sin x\cos x$. Notice that $z = \frac12\sin2x$, so that $|z| \leqslant \frac12.$ Also, $\sin^4\!x + \cos^4\!x = (\sin^2\!x+\cos^2\!x)^2 - 2\sin^2\!x\cos^2\!x = 1 - 2z^2$; and $ \sin^2\!x + \sin x\cos x + \cos^2\!x = 1+z.$ So the equation becomes $$z^3\bigl((1-2z^2)(1+z) + z^3\bigr) = 1+z,$$ $$z^6 - 2z^5 + z^4 + z^3 - z = 1.$$ But $|z^6 - 2z^5 + z^4 + z^3 - z| \leqslant |z|^6 + 2|z|^5 + |z|^4 + |z|^3 + |z| \leqslant \frac1{64} + \frac1{16} + \frac1{16} + \frac18 + \frac12 <1.$ So there are no solutions for $z$, showing that there are no further solutions for $x$.[/sp]

Neat and elegant solution, especially on the second part how you ruled out the possibility that there will be any solution(s) from the second situation! Thank you Opalg!:cool:
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K