MHB Trigonometry Challenge: Can You Solve This Equation?

AI Thread Summary
The equation $\sin^7 x + \frac{1}{\sin^3 x} = \cos^7 x + \frac{1}{\cos^3 x$ leads to the conclusion that the only solution occurs when $\sin x = \cos x$, resulting in $x = \left(n + \frac{1}{4}\right)\pi$. Further analysis shows that dividing by $\sin x - \cos x$ leads to a transformed equation involving $z = \sin x \cos x$, which ultimately reveals no additional solutions. The derived polynomial in $z$ demonstrates that its absolute value remains less than 1, confirming the absence of further solutions. Thus, the only solutions for the original equation are those where $\sin x = \cos x$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $\sin^7 x+\dfrac{1}{\sin^3 x}=\cos^7 x+\dfrac{1}{\cos^3 x}$.
 
Mathematics news on Phys.org
anemone said:
Solve the equation $\sin^7 x+\dfrac{1}{\sin^3 x}=\cos^7 x+\dfrac{1}{\cos^3 x}$.
[sp]Multiply out the fractions: $$\sin^{10}\!x\cos^3\!x + \cos^3\!x = \cos^{10}\!x\sin^3\!x + \sin^3\!x,$$ $$\sin^{10}\!x\cos^3\!x - \cos^{10}\!x\sin^3\!x = \sin^3\!x - \cos^3\!x,$$ $$\sin^3\!x \cos^3\!x(\sin^7\!x - \cos^7\!x) = \sin^3x - \cos^3\!x,$$ $$\begin{aligned}\sin^3\!x &\cos^3\!x(\sin x - \cos x)(\sin^6\!x + \sin^5\!x\cos x + \sin^4\!x\cos^2\!x + \sin^3\!x\cos^3\!x + \sin^2\!x\cos^4\!x + \sin x\cos^5\!x + \cos^6\!x)\\ &= (\sin x - \cos x)(\sin^2\!x + \sin x\cos x + \cos^2\!x). \end{aligned}$$ One possibility (which in fact will turn out to be the only possibility) is $\sin x = \cos x$, or $x = \bigl(n+\frac14\bigr)\pi$. Otherwise, divide both sides by $\sin x - \cos x$: $$\sin^3\!x \cos^3\!x \bigl((\sin^4\!x + \cos^4\!x)(\sin^2\!x + \sin x\cos x + \cos^2\!x) + \sin^3\!x \cos^3\!x\bigr) = \sin^2\!x + \sin x\cos x + \cos^2\!x.$$ Now let $z = \sin x\cos x$. Notice that $z = \frac12\sin2x$, so that $|z| \leqslant \frac12.$ Also, $\sin^4\!x + \cos^4\!x = (\sin^2\!x+\cos^2\!x)^2 - 2\sin^2\!x\cos^2\!x = 1 - 2z^2$; and $ \sin^2\!x + \sin x\cos x + \cos^2\!x = 1+z.$ So the equation becomes $$z^3\bigl((1-2z^2)(1+z) + z^3\bigr) = 1+z,$$ $$z^6 - 2z^5 + z^4 + z^3 - z = 1.$$ But $|z^6 - 2z^5 + z^4 + z^3 - z| \leqslant |z|^6 + 2|z|^5 + |z|^4 + |z|^3 + |z| \leqslant \frac1{64} + \frac1{16} + \frac1{16} + \frac18 + \frac12 <1.$ So there are no solutions for $z$, showing that there are no further solutions for $x$.[/sp]
 
Last edited by a moderator:
Opalg said:
[sp]Multiply out the fractions: $$\sin^{10}\!x\cos^3\!x + \cos^3\!x = \cos^{10}\!x\sin^3\!x + \sin^3\!x,$$ $$\sin^{10}\!x\cos^3\!x - \cos^{10}\!x\sin^3\!x = \sin^3\!x - \cos^3\!x,$$ $$\sin^3\!x \cos^3\!x(\sin^7\!x - \cos^7\!x) = \sin^3x - \cos^3\!x,$$ $$\begin{aligned}\sin^3\!x &\cos^3\!x(\sin x - \cos x)(\sin^6\!x + \sin^5\!x\cos x + \sin^4\!x\cos^2\!x + \sin^3\!x\cos^3\!x + \sin^2\!x\cos^4\!x + \sin x\cos^5\!x + \cos^6\!x)\\ &= (\sin x - \cos x)(\sin^2\!x + \sin x\cos x + \cos^2\!x). \end{aligned}$$ One possibility (which in fact will turn out to be the only possibility) is $\sin x = \cos x$, or $x = \bigl(n+\frac14\bigr)\pi$. Otherwise, divide both sides by $\sin x - \cos x$: $$\sin^3\!x \cos^3\!x \bigl((\sin^4\!x + \cos^4\!x)(\sin^2\!x + \sin x\cos x + \cos^2\!x) + \sin^3\!x \cos^3\!x\bigr) = \sin^2\!x + \sin x\cos x + \cos^2\!x.$$ Now let $z = \sin x\cos x$. Notice that $z = \frac12\sin2x$, so that $|z| \leqslant \frac12.$ Also, $\sin^4\!x + \cos^4\!x = (\sin^2\!x+\cos^2\!x)^2 - 2\sin^2\!x\cos^2\!x = 1 - 2z^2$; and $ \sin^2\!x + \sin x\cos x + \cos^2\!x = 1+z.$ So the equation becomes $$z^3\bigl((1-2z^2)(1+z) + z^3\bigr) = 1+z,$$ $$z^6 - 2z^5 + z^4 + z^3 - z = 1.$$ But $|z^6 - 2z^5 + z^4 + z^3 - z| \leqslant |z|^6 + 2|z|^5 + |z|^4 + |z|^3 + |z| \leqslant \frac1{64} + \frac1{16} + \frac1{16} + \frac18 + \frac12 <1.$ So there are no solutions for $z$, showing that there are no further solutions for $x$.[/sp]

Neat and elegant solution, especially on the second part how you ruled out the possibility that there will be any solution(s) from the second situation! Thank you Opalg!:cool:
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top