Trigonometry Challenge (Find x)

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve $\large 3^{3\cos x(1+\sin^2 x)}-3^{\cos x(4-\sin^2 x)}=6\cos 3x$.
 
Mathematics news on Phys.org
Hint:

Try to rewrite the given equation such that one side is always greater than or equal to zero, and the other side is always less than or equal to zero...
 
Solution of other:

$ 3^{3\cos x(1+\sin^2 x)}-3^{\cos x(4-\sin^2 x)}=6\cos 3x$

$ 3^{3\cos x(1+\sin^2 x)}\left(1-\dfrac{3^{\cos x(4-\sin^2 x)}}{3^{3\cos x(1+\sin^2 x)}}\right)=6\cos 3x$

$ 3^{3\cos x(1+\sin^2 x)}(1-3^{(4\cos x-\cos x\sin^2 x)-(3\cos x+3\cos x\sin^2 x)})=6\cos 3x$

$ 3^{3\cos x(1+\sin^2 x)}(1-3^{(4\cos x-\cos x(1-\cos^2 x))-(3\cos x+3\cos x(1-\cos^2 x))})=6\cos 3x$

$ 3^{3\cos x(1+\sin^2 x)}(1-3^{(4\cos x-\cos x+\cos^3 x)-(3\cos x+3\cos x-3\cos^3 x)})=6\cos 3x$

$ 3^{3\cos x(1+\sin^2 x)}(1-3^{4\cos^3 x-3\cos x})=6\cos 3x$

$ 3^{3\cos x(1+\sin^2 x)}(1-3^{\cos 3x})=6\cos 3x$

$ 3^{3\cos x(1+\sin^2 x)}(1-3^{\cos 3x})(1-3^{\cos 3x})=6\cos 3x(1-3^{\cos 3x})$

$ \dfrac{3^{3\cos x(1+\sin^2 x)}(1-3^{\cos 3x})^2}{6}=\cos 3x(1-3^{\cos 3x})$ (*)Since $y=f(x)(1-3^{f(x)})\le 0$ for all $x$, the RHS of the equation above (*) is always less than or zero to zero for all $x$

But notice that on the LHS of the equation (*), we have

1. A squared term on the LHS that is always greater than or equal to zero: $(1-3^{\cos 3x})^2\ge 0$,

2. $\dfrac{3^{3\cos x(1+\sin^2 x)}}{6}$ that is always greater than zero.

That means the equation holds iff both sides equal to zero, and that happens when:

$\cos 3x=0$

$3x=\dfrac{\pi}{2}+n\pi$.

$\therefore x=\dfrac{\pi}{6}+\dfrac{n\pi}{3}$ for integer $n$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K