- #1
Crystal037
- 167
- 7
- Homework Statement
- if a = sinx+cosx and b=tanx+cotx, then the value of a(b^2-1)-2 is
- Relevant Equations
- sin^2(x)+cos^2(x)
b^2-1= tan^2(x) + cot^2(x) + 2 -1
b^2-1= sin^2(x)/cos^2(x) +cos^2(x)/sin^2(x) -1
b^2-1=[sin^4(x) +cos^4(x)]/sin^2(x)cos^2(x) -1
b^2-1=[1-sin^2(x)cos^2(x)]/sin^2(x)cos^2(x) -1
a(b^2-1)=sinx+cosx {[1-sin^2(x)cos^2(x)]/sin^2(x)cos^2(x) -1 }
I am not able to go any further than this step to reach the answer
b^2-1= sin^2(x)/cos^2(x) +cos^2(x)/sin^2(x) -1
b^2-1=[sin^4(x) +cos^4(x)]/sin^2(x)cos^2(x) -1
b^2-1=[1-sin^2(x)cos^2(x)]/sin^2(x)cos^2(x) -1
a(b^2-1)=sinx+cosx {[1-sin^2(x)cos^2(x)]/sin^2(x)cos^2(x) -1 }
I am not able to go any further than this step to reach the answer
Last edited by a moderator: