Troubleshooting Coordinates System from Cone

Reg_S
Messages
5
Reaction score
0
Homework Statement
A point particle of mass m slides without friction on inside the surface of a truncated cone. The cone is fixed , with half angle α, a bottom radius a, and a top radius b. You are to assume that the particle always remains in contact with the cone. Use ρ as a coordinate describing a location along the cone surface and θ to describe the azimuthal angle locating the particle.
Relevant Equations
a) Consider first circular orbits ( Constant ρ) contained within the truncated cone. What range of total energy is available?
b) Find the frequency of small oscillations about a particular contained circular orbit assumed to be ρ=ρ0 ? Express in terms of a, b, α and ω0.
c) Now consider a non-circular orbit (ρ is not constant) . Assume a particle is released the top rim with an initial velocity with components ρ(0)=0 and θ(0)= ω' >0. For what range of ω' is the motion entirely contained within the truncated cone.
I tried using coordinates system from cone, but not got what actually want to get. Any idea from you will greatly appreciated. Thanks
 
Physics news on Phys.org
Don't know how to solve it, but I know what those who can are going to say... Present your attempt at a solution.
 
  • Like
Likes PhDeezNutz and vanhees71
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top