MHB Two dimensional rotational Matrix

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Matrix Rotational
Click For Summary
The discussion focuses on proving that the two-dimensional rotation matrix preserves the length of a vector A in electrodynamics, as presented in Griffiths' textbook. The problem requires demonstrating that (A_y')^2 + (A_z')^2 equals (A_y)^2 + (A_z)^2. The transformation equations for A_y' and A_z' are provided, leading to an expression that can be simplified using trigonometric identities. A participant points out the need to expand the squared terms and emphasizes that certain terms will cancel out. The conversation also includes a humorous correction regarding the use of "perverse" instead of "preserve."
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everybody,

I am trying to learn about the electrodynamics. I am using the textbook, Introduction to Electrodynamics (2nd Ed) by D. J. Griffiths. I am working on the Problem 1.8. The question state:

Prove that the two-dimensional rotation matrix perverse the length of A. (That is, show that $(A_y')^2+(A_z')^2=(A_y)^2+(A_z)^2$)

$\left(\begin{array}{cc} A_y'\\ A_z'\end{array}\right)$=$\left(\begin{array}{cc} cos(\phi) & sin(\phi)\\ -sin(\phi) & cos(\phi) \end{array} \right)$ $\left(\begin{array}{cc} A_y\\A_z\end{array}\right)$

I am struck at the beginning.
 
Physics news on Phys.org
Cbarker1 said:
Dear Everybody,

I am trying to learn about the electrodynamics. I am using the textbook, Introduction to Electrodynamics (2nd Ed) by D. J. Griffiths. I am working on the Problem 1.8. The question state:

Prove that the two-dimensional rotation matrix perverse the length of A. (That is, show that $(A_y')^2+(A_z')^2=(A_y)^2+(A_z)^2$)

$\left(\begin{array}{cc} A_y'\\ A_z'\end{array}\right)$=$\left(\begin{array}{cc} cos(\phi) & sin(\phi)\\ -sin(\phi) & cos(\phi) \end{array} \right)$ $\left(\begin{array}{cc} A_y\\A_z\end{array}\right)$

I am struck at the beginning.
From the vector equation you have
[math]A_{y'} = cos( \theta ) A_y + sin( \theta ) A_z[/math]
[math]A_{z'} = -sin( \theta ) A_y + cos( \theta ) A_z[/math]

So
[math](A_{y'})^2 + (A_{z'})^2 = \left ( cos( \theta ) A_y + sin( \theta ) A_z \right ) ^2 + \left ( -sin( \theta ) A_y + cos( \theta ) A_z \right ) ^2[/math]

Expand it out (it's not quite as bad as it looks) and you will get
[math](A_{y'})^2 + (A_{z'})^2 = \left ( sin^2 ( \theta ) + cos^2( \theta ) \right ) (A_{y})^2 + \left ( sin^2( \theta ) + cos^2 ( \theta ) \right ) (A_z)^2[/math]

(Hint: The terms in [math]A_y ~ A_z[/math] cancel out.)

Can you finish out the details?

-Dan
 
I hope you mean "preserve", not "perverse"!
 
Country Boy said:
I hope you mean "preserve", not "perverse"!
I meant to preserve.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
769
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K