thanks for quick reply
I would have to make some assumption about the distribution of friendships being in some way randomn
could i assume that there are p(p-1)/2 friendships that may or may not be made thus 2^(p(p-1)/2) equally possible patterns of the friendships and then apply some of Eulers rules to cancel things down to give me the number of friendships?
this seems somewhat laborious so perhaps if I tackle it the other way
if p=1 then pf=1
if p=2 then pf=1 (either they are friends nf=1 for both or not friends nf=0 for both
if p=3 then pf=? (either no-one friends nf =0,0,0 or 3 ways of doing nf=1,1,0 or 3 ways of doing nf=2,1,1 and case allfriends nf=2,2,2)
pf=1/8 + 1/3*3/8 + 1/3*3/8 + 1/8 = 1/2
if p=4 then pf=? (2^6 poss; either no-one friends nf =0,0,0,0; six ways of 1 friendship nf=1,1,0,0 choosing equals 1/2 the time; 3 ways of pairing friends nf=1,1,1,1; 12 love triangle and gooseberry nf=2,1,1,0 get the equals 1 time in 6; 4 ways to idolise someone nf=3,1,1,1 not getting the god half the time;menage a trois nf=2,2,2,0 4 times getting equal 1/2;nf=2,2,1,1 a broken circle 12 times and equal 1/2; nf=3,2,2,1 can be done 12 ways it is the inverse of the love triangle and the gooseberry,invert the pairs which become circles of admiration; and singles to get nf=3,3,2,2 and finally love all round to get nf=3,3,3,3
pf=1/64 + 1/2*6/64 + 3/64 + 1/6*12/64 + 1/2*4/64 + 1/2*4/64 + 1/2*12/64 + 1/6*12/64 + 3/64 + 1/2*6/64 + 1/64 = 28/64
this now looks like even more work
however having worked through all of this I can now see the easy way to look at the problem and the minor errors in my calculations are pointless as it is so much easier to do. I will have to figure out how to type it in as a non-spoiler as I'm sure others will want to work it out