MHB Tyler's question at Yahoo Answers (linear independence)

AI Thread Summary
If the set {w1, ... wm} is linearly independent in a vector space V, then the corresponding set of coordinate vectors {[w1]B, ... [wm]B} is also linearly independent in Rn. This is demonstrated using properties of vector representation in a fixed basis B, including linearity and the uniqueness of representation for the zero vector. By assuming a linear combination of the coordinate vectors equals zero, it leads to a conclusion that the original vectors must also combine to zero, contradicting their independence. Therefore, the linear independence of the original set guarantees the linear independence of the transformed set in Rn. This establishes a fundamental relationship between linear independence in different vector spaces.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Show that if {w1, ... wm} is linearly independent in V, then {[w1]B , ... [wm]B} is linearly independent in Rn.

Here is a link to the question:

Linear algebra help please please? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Tyler,

Fixing a basis $B=\{w_1,\ldots,w_m\}$ of a real vector space $V$ we know that

$(i)\;[x+y]_B=[x]_B+[y]_B$ or all $x,y\in V$.
$(ii)\;[\lambda x]_B=\lambda [x]_B$ for all $\lambda \in \mathbb{R}$.
$(iii)\;[x]_B=(0,\ldots ,0)\Leftrightarrow x=0$.

Suppose $\lambda_1 [w_1]_B +\ldots +\lambda_m [w_m]_B=(0,\ldots ,0)$. Using $(i)$ and $(ii)$:
$$[\lambda_1 w_1 +\ldots +\lambda_m w_m]_B=(0,\ldots, 0)$$
Using $(iii)$: $\lambda_1 w_1 +\ldots +\lambda_m w_m=0$.

By hypothesis $ \{w_1,\ldots ,w_m\}$ are linearly independent, so $\lambda_1=\ldots =\lambda_m=0$. This proves that $\{[w_1]_B,\ldots,[w_m]_B\}$ are linearly independent.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top