Type Godel Metric Line Element - Get Help Here!

space-time
Messages
218
Reaction score
4
Can someone please type out the line element for the Godel metric (including any and all c terms and any other terms that one might omit if they were using natural units to set terms like c = 1)? I ask this because different sources on line have it written out in different ways which look somewhat sloppy and hard for me to understand. With the latex here, we have access to more advanced mathematical symbols for typing as well as superscripts and subscripts (which will make it easier to read).

Thank you in advance.
 
Physics news on Phys.org
Last edited by a moderator:
Mentz114 said:
It is here http://en.wikipedia.org/wiki/G%C3%B6del_metric.[/PLAIN]

Put a factor of ##c## in front of ##dt##.

##ds^2= \frac{1}{2\omega^2} [ -(c\ dt + e^x dz)^2 + dx^2 + dy^2 + \tfrac{1}{2} e^{2x} dz^2], \qquad\qquad -\infty < t,x,y,z < \infty##
Thank you
 
Last edited by a moderator:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top