I have been working with the Godel solution to the Einstein field equations which is known to contain closed time-like curves.(adsbygoogle = window.adsbygoogle || []).push({});

The metric I am using is the following:

ds^{2}= dt^{2}/(2ω^{2}) + (e^{x}dzdt)/ω^{2}+ (e^{2x}dz^{2})/(4ω^{2}) - dx^{2}/(2ω^{2}) - dy^{2}/(2ω^{2})

This is sign convention (+ - - -)

Now from what I've researched, the term ω is the angular velocity of the dust grains in this space-time around the y-axis. Now let's get to an example scenario that I came up with:

Some dust grains in a Godel space-time, travel around the y-axis at an angular velocity of ω (I won't specify what ω is just yet for a certain reason). The observer named Boruto decides to stand in this space-time at the spatial coordinates (x,y,z) = (0,0,0). He stays there and doesn't move. This of course means that x(t) = 0, y(t) = 0, and z(t) = 0. Meanwhile, another guy named Kawaki decides to relax by simply sitting on one of the dust grains. Kawaki's mass is negligible, so let's just say he doesn't slow the dust grain down. Now, while riding the dust grain, Kawaki counts some arbitrary coordinate time t. In this case, how much proper time τ would pass from Boruto's perspective?

Now, here is my process (and yes I purposely didn't give a value for t):

τ = ∫sqrt(ds^{2}) = ∫sqrt( dt^{2}/(2ω^{2})) = [1/(ω√2)] * ∫_{0}^{t}1 dt = [t/(ω√2)]

Just in case it is not clear, the bounds on that previous integral are 0 to t. Anyway, as you can see here, if an observer is standing still in a Godel universe (and not riding one of the dust grains), then the relationship between the proper time τ that they count, and the time t seen by an observer who just rides the grains is:

τ = t / (ω√2) Note: This is why I didn't specify a value for ω or t earlier. I just wanted to derive this particular formula.

Now this leads into my questions about closed time-like curves and time travel:

1. As can be seen in the above formula, if a negative value is plugged in for ω, then τ would turn out negative and it would seem as if the observer standing still saw time moving in reverse. However, is it actually physically possible for ω to be negative? I know that sometimes when taking direction into consideration, one particular direction of rotation is considered positive while the other is considered negative. However, it is a matter of convention regarding which direction is chosen as positive and which is negative. That is why I am questioning whether or not the dust grains could actually move in a way so that ω is negative, and if this would actually cause the sought out time reversal effect. Here's a thought: Based on what I've researched, a Godel universe has to be rotating, so maybe the dust grains could achieve a negative ω if their direction of motion is opposite to the direction of the universe's rotation. What is you guys' response to this?

2. If a negative ω is not what would be responsible for backwards time-travel in a space-time like this, then there is another part of this metric that I have noticed that may have something to do with backwards time-travel or closed time-like curves. According to this wiki on the Godel metric https://en.wikipedia.org/wiki/Gödel_metric, the variables t, x, y, and z can range from -∞ to ∞ .How can t be negative though? This certainly would lead to the possibility of τ coming out negative after all the integration and other calculations are done, but I don't know how it is physically possible for the external observer (the guy riding the grains) to count a negative coordinate time t in the first place.

3. If neither of these two things have any effect on the presence of closed time-like curves or backwards time travel in a Godel space-time, then how can you tell that the Godel metric contains closed time-like curves? Can you tell that because of some feature within the line element? Can you tell it because of any other relativistic tensors such as the Riemann or Ricci curvature tensors or some other tensor? Can you tell by looking at the velocity 4 - vector? I would like to see the mathematical representation of a closed time-like curve. Please show/tell me what on paper screams closed time-like curve or backwards time travel.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Noticing CTC's / time travel in a Godel space-time

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**