- 23,709
- 5,927
OK. Let's see how this plays out. The equation for a circle is $$x^2+y^2=r^2\tag{1}$$. The circular motion of the mass moving at constant speed can be expressed parametrically as $$x=r\cos \left(\frac{v}{r}t\right)\tag{2}$$
$$y=r\sin \left(\frac{v}{r}t\right)\tag{3}$$where v is the (constant) speed and t is time. Eqns. 2 and 3 satisfy Eqn. 1 exactly. How do we know that this is also consistent with a constant speed for the mass? If we take the derivative of the coordinates of the mass x and y with respect to time, we obtain the x and y components of velocity:
$$v_x=-v\sin \left(\frac{v}{r}t\right)\tag{4}$$
$$v_y=+v\cos \left(\frac{v}{r}t\right)\tag{5}$$
If we take the sum of the squares of these two velocity components, we (automatically) obtain the square of the (constant) speed v:
$$v_x^2+v_y^2=v^2\tag{6}$$
Not let T be the tension of the string attached to the origin. At any time t, the components of the tension in the x and y directions are:
$$T_x=-T\frac{x}{\sqrt{x^2+y^2}}=-T\cos \left(\frac{v}{r}t\right)\tag{7}$$
$$T_y=-T\frac{y}{\sqrt{x^2+y^2}}=-T\sin \left(\frac{v}{r}t\right)\tag{8}$$
Now for the force balances. The force balance in the x direction is given by:
$$m\frac{dv_x}{dt}=T_x=-T\cos \left(\frac{v}{r}t\right)\tag{9}$$
The force balance in the y direction is given by:$$m\frac{dv_y}{dt}=T_y=-T\sin \left(\frac{v}{r}t\right)\tag{10}$$
@Faiq: Is this all OK with you so far?
$$y=r\sin \left(\frac{v}{r}t\right)\tag{3}$$where v is the (constant) speed and t is time. Eqns. 2 and 3 satisfy Eqn. 1 exactly. How do we know that this is also consistent with a constant speed for the mass? If we take the derivative of the coordinates of the mass x and y with respect to time, we obtain the x and y components of velocity:
$$v_x=-v\sin \left(\frac{v}{r}t\right)\tag{4}$$
$$v_y=+v\cos \left(\frac{v}{r}t\right)\tag{5}$$
If we take the sum of the squares of these two velocity components, we (automatically) obtain the square of the (constant) speed v:
$$v_x^2+v_y^2=v^2\tag{6}$$
Not let T be the tension of the string attached to the origin. At any time t, the components of the tension in the x and y directions are:
$$T_x=-T\frac{x}{\sqrt{x^2+y^2}}=-T\cos \left(\frac{v}{r}t\right)\tag{7}$$
$$T_y=-T\frac{y}{\sqrt{x^2+y^2}}=-T\sin \left(\frac{v}{r}t\right)\tag{8}$$
Now for the force balances. The force balance in the x direction is given by:
$$m\frac{dv_x}{dt}=T_x=-T\cos \left(\frac{v}{r}t\right)\tag{9}$$
The force balance in the y direction is given by:$$m\frac{dv_y}{dt}=T_y=-T\sin \left(\frac{v}{r}t\right)\tag{10}$$
@Faiq: Is this all OK with you so far?