Understanding Direct Products of Vector Spaces: Cooperstein's Example 1.17

Click For Summary

Discussion Overview

The discussion revolves around understanding the concept of direct products of vector spaces as presented in Bruce Cooperstein's book, specifically focusing on an example from Chapter 1. Participants explore the definitions and implications of direct products, particularly in relation to finite and infinite indexing sets.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Peter expresses difficulty in understanding Cooperstein's example of direct products of vector spaces and requests clarification using the author's notation.
  • One participant explains that an $n$-tuple in $\mathbb{R}^n$ can be viewed as a function from an indexing set to $\mathbb{R}$, aligning with Cooperstein's definition of direct products.
  • It is noted that Cooperstein's definition allows for the direct product to be defined even when the indexing set is infinite, which is a significant advantage.
  • Peter seeks further clarification on the isomorphism between the resulting space when $I = \mathbb{N}$ and $U_i = F$ for all $i \in I$, as mentioned in a previous post.
  • Another participant suggests that each polynomial can be associated with an $n$-tuple of its coefficients, prompting Peter to inquire about the meaning of $F$-linear mappings.
  • A definition of $F$-linear maps is provided, illustrating how they preserve addition and scalar multiplication in the context of vector spaces.

Areas of Agreement / Disagreement

Participants generally agree on the foundational concepts of direct products and their representations, but there are unresolved questions regarding specific implications and definitions, particularly concerning $F$-linear mappings and the isomorphism mentioned.

Contextual Notes

The discussion includes various assumptions about the nature of indexing sets and the properties of vector spaces that are not fully resolved. The implications of infinite indexing sets and the conditions under which the mappings are considered $F$-linear remain open for further exploration.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Bruce Cooperstein's book: Advanced Linear Algebra, he gives the following example on page 12 in his chapter on vector spaces (Chapter 1) ... ...View attachment 4886I am finding it difficult to fully understand this example ... ...

Can someone give an example using Cooperstein's construction ... using, for clarity, his notation ... ?

If we take $$I = \{ 1, 2, \ ... \ ... \ , n \}$$ ... ... then I am used to thinking that the direct product of vector spaces $$U_1, U_2, \ ... \ ... \ U_n$$ is the set of all n-tuples $$( u_1, u_2, \ ... \ ... \ u_n )$$ with addition and scalar multiplication defined componentwise ... ...

BUT ... how do we square this with Cooperstein's definition/construction of the direct product of a set of vector spaces ... ...

Hope someone can help clarify the above issues ... ...

Peter
 
Physics news on Phys.org
Consider an $n$-tuple in $\Bbb R^n$, say $u = (x_1,\dots,x_n)$.

We can regard this as a function $f:\{1,\dots,n\}\to \Bbb R$, namely, the function given by:

$f(i) = x_i$.

So, in Cooperstein's notation, if we call the set $\{1,\dots,n\}$ say, $I$, we have:

$\Bbb R^n = \Pi_{i \in I}\ \Bbb R = \Bbb R\oplus \cdots \oplus \Bbb R$ (an $n$-fold direct product).

If we have $v = (y_1,\dots,y_n)$, we can similarly define $v$ as the function $g:I \to \Bbb R$ given by:

$g(i) = y_i$.

Normally, we think of $u+v$ as being defined as "component-wise" addition, that is:

$u + v = (x_1 + y_1,\dots,x_n + y_n)$.

If we define $f+g$ by $(f+g)(i) = f(i) + g(i)$ as Cooperstein does, we get that $f+g$ maps $i$ to $x_i + y_i$. So it accomplishes the same thing.

The advantage to Cooperstein's definition, is that if $I$ is not a FINITE set, we can still define the direct product of a number of spaces corresponding to the infinite number of things in $I$ ($I$ is called the *indexing* set).

Convince yourself that if $I = \Bbb N$, and $U_i = F$ for all $i \in I$, that the resulting space we get is isomorphic as a $F$-vector space to $F[x]$. It is common to refer to the image $f(i)$ as the "$i$-th coordinate" of a vector when all the $U_i$ coincide with the underlying field, and as the "$i$-th component" when the $U_i$ are subspaces of the product.
 
Deveno said:
Consider an $n$-tuple in $\Bbb R^n$, say $u = (x_1,\dots,x_n)$.

We can regard this as a function $f:\{1,\dots,n\}\to \Bbb R$, namely, the function given by:

$f(i) = x_i$.

So, in Cooperstein's notation, if we call the set $\{1,\dots,n\}$ say, $I$, we have:

$\Bbb R^n = \Pi_{i \in I}\ \Bbb R = \Bbb R\oplus \cdots \oplus \Bbb R$ (an $n$-fold direct product).

If we have $v = (y_1,\dots,y_n)$, we can similarly define $v$ as the function $g:I \to \Bbb R$ given by:

$g(i) = y_i$.

Normally, we think of $u+v$ as being defined as "component-wise" addition, that is:

$u + v = (x_1 + y_1,\dots,x_n + y_n)$.

If we define $f+g$ by $(f+g)(i) = f(i) + g(i)$ as Cooperstein does, we get that $f+g$ maps $i$ to $x_i + y_i$. So it accomplishes the same thing.

The advantage to Cooperstein's definition, is that if $I$ is not a FINITE set, we can still define the direct product of a number of spaces corresponding to the infinite number of things in $I$ ($I$ is called the *indexing* set).

Convince yourself that if $I = \Bbb N$, and $U_i = F$ for all $i \in I$, that the resulting space we get is isomorphic as a $F$-vector space to $F[x]$. It is common to refer to the image $f(i)$ as the "$i$-th coordinate" of a vector when all the $U_i$ coincide with the underlying field, and as the "$i$-th component" when the $U_i$ are subspaces of the product.

Hi Deveno ... thanks for the help ...

Until I received your post I was having real trouble seeing how a function $$f$$ was identical to (or could be equivalent to) an $$n$$-tuple or an indexed set of values ... then after reading through your post I realized that the set of function values, $$f(i)$$ is, of course, indexed by the set $$I$$ in the same way as an $$n$$-tuple ... and so the function $$f$$ gives essentially the same information as an $$n$$-tuple ...Just a further question, however ... ... ... you wrote:

"Convince yourself that if $I = \Bbb N$, and $U_i = F$ for all $i \in I$, that the resulting space we get is isomorphic as a $F$-vector space to $F[x]$. ... ... "

I am having trouble seeing this ... can you help further ... it looks a really interesting point ...

Hope you can help ...

Peter
 
To any polynomial $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ we can assign the $n$-tuple:

$(a_0,a_1,a_2,\dots,a_n)$ (our indexing set is infinite, because $n$ might be arbitrarily large).

Your job is to show that if we call this $n$-tuple $[f]$, that the mapping:

$f(x) \mapsto [f]$ is $F$-linear.
 
Deveno said:
To any polynomial $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ we can assign the $n$-tuple:

$(a_0,a_1,a_2,\dots,a_n)$ (our indexing set is infinite, because $n$ might be arbitrarily large).

Your job is to show that if we call this $n$-tuple $[f]$, that the mapping:

$f(x) \mapsto [f]$ is $F$-linear.
Thanks Deveno ...

Can you clarify exactly what is meant by F-linear ...

Peter
 
By definition an $F$-linear map is an $F$-module homomorphism, in other words it preserves the module addition, and the action of $F$ upon the underlying $F$-module $V$. This is often written:

$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$.

For example, on the vector space of real polynomials, $\Bbb R[x]$, the map $D$ given by $D(f(x)) = f'(x)$

(here $f'(x)$ is the *formal derivative of $f$*, if:
$f(x) = a_0 + a_1x +\cdots + a_nx^n$, then $f'(x) = a_1 + 2a_2x +\cdots + na_nx^{n-1}$)

is a $\Bbb R$-linear map, since:

$D(f(x) + g(x)) = (f+g)'(x) = f'(x) + g'(x) = D(f(x)) + D(g(x))$

and:

$D(\alpha f(x)) = (\alpha f)'(x) = \alpha(f'(x)) = \alpha D(f(x))$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K