Understanding Fourier Transforms

AI Thread Summary
The discussion centers on using the Fourier transform to analyze the function x(t) = A sin(w1t) + B cos(w2t) for its frequency response and spectrum graph. Participants emphasize the importance of showing work when asking for help and clarify that a frequency response typically relates to transfer functions in circuits. The conversation also prompts the user to identify the frequency components present in the time domain function. Understanding these components is crucial for accurately sketching the frequency domain representation. Overall, the thread highlights the need for clarity in defining terms and demonstrating effort in problem-solving.
P99
Messages
1
Reaction score
0
New poster has been reminded (again) to always show their work when starting schoolwork threads
Homework Statement
How to obtain the frequency response and the spectrum graph of this function
x(t) = A sen(w1t) + Bcos(w2t)
Relevant Equations
Hi guys, can someone help me solve this.
Thanks.
I think that is with the Fourier transform.
 
Physics news on Phys.org
P99 said:
Homework Statement:: How to obtain the frequency response and the spectrum graph of this function
x(t) = A sen(w1t) + Bcos(w2t)
Relevant Equations:: Hi guys, can someone help me solve this.
Thanks.

I think that is with the Fourier transform.
You were asked to show your work when reposting this question. Please show more effort or this thread will also be deleted.

That said, what do you mean "frequency response" in the context of that equation? A frequency response is usually associated with the transfer function of a function block or circuit. Certainly you can sketch the frequency domain version of that time domain function, right? What are the two frequency components of that sketch?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...

Similar threads

Replies
1
Views
3K
Replies
4
Views
1K
Replies
2
Views
467
Replies
5
Views
1K
Replies
4
Views
3K
Replies
47
Views
3K
Replies
6
Views
1K
Back
Top