MHB Understanding How to Solve Vector Magnitudes and Angles

Click For Summary
To solve for the unknown magnitudes of two vectors, one must sum the x and y components and set them equal to zero, leading to a system of equations. A method involves using specific ratios for the components based on angles, such as $\frac{3}{5}$ and $\frac{4}{5}$ for the x and y components, respectively. The angle of 53.1 degrees, derived from $\arctan(\frac{4}{3})$, is used to determine the x-component by multiplying the vector's magnitude by $\cos(53.1)$. The discussion raises concerns about the configuration of the problem, particularly regarding the absence of positive y-components in the vectors. Understanding the context, such as whether this is a statics problem involving forces, is crucial for correctly applying these methods.
bergausstein
Messages
191
Reaction score
0

I just don't understand others way solving this problem

to solve for the unknown magnitudes of the two vectors I have to sum up all of the components in x and y and set them equal zero and from there I'll get some systems of equation.

I saw a method where they let the x-component of AB and BE to be

$\displaystyle\frac{3}{5}\cdot -9.38$ and $\displaystyle\frac{3}{5}\cdot BE$ respectively.

and the y-components of AB and BE to be

$\displaystyle\frac{4}{5}\cdot -9.38$ and $\displaystyle\frac{4}{5}\cdot -BE$ respectively

Can you explain why they do that?

and how can we solve this using angle

I know that $\arctan(\frac{4}{3})=53.1\deg$ but I'm uncertain on how to plug it in my equation properly I also know that to get the x-component I have to multiply the magnitude of the vector I'm interested into by the $\cos(53.1)$ in the problem given. but this configuration makes me wonder if I'm doing it correctly. hope you can help me with this. thanks!

 

Attachments

  • statics.png
    statics.png
    2.7 KB · Views: 120
Mathematics news on Phys.org
I think some context would be good here. Is this a statics problem? I'm seeing forces on your diagram, which is typically what you find on a Free Body Diagram. If you have to set all the components equal to zero, I think you're going to have a hard time of it, as none of the vectors have any positive $y$-component.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K