Understanding Kirchhoff's Rules for Solving Electrical Circuits

  • Thread starter Thread starter member 392791
  • Start date Start date
  • Tags Tags
    Rules
AI Thread Summary
When using Kirchhoff's rules, it's crucial to identify the direction of current flow through a resistor, which always moves from high potential to low potential. To clarify potential differences, start by marking the direction of the current; this will help determine which end of the resistor is at a higher potential. When traversing a resistor in the direction of current, a voltage drop of -IR occurs. Understanding these conventions is essential for solving DC circuit problems effectively. Properly identifying potential differences simplifies the application of Kirchhoff's rules.
member 392791
Hello,

I am having difficulty when trying to solve problems requiring kirchhoffs rules. The problem I seem to be having is following the convention used by my book. I can't tell when the current is gaining potential going across a resistor, or atleast going from low potential to high potential.

The problem seems to stem from not knowing which end of the resistor is at higher potential than the other, so I can do either +IR or -IR

If anyone can clarify, that would be great. Thank you
 
Last edited by a moderator:
Physics news on Phys.org
The current in a resistor always flows from high potential to low potential. So, once you mark the direction of the current through the resistor, the high potential and low potential ends of the resistor become obvious. Generally, when you are solving dc circuits, and you are required to find the current in a resistor, you start by marking the direction of the current. Then, you mark the high potential end and low potential end of the resistor in such a way that the current is flowing from high potential to low potential.
 
Select your loop. When a resistor is traversed in your chosen loop, along the direction of current, then there is a voltage drop -IR.
 
Thank you for the responses, much appreciated.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...

Similar threads

Back
Top