1. Navier-Stokes is, simply F=ma per unit mass, as expressed in terms of how the velocity field must be in the fluid, rather than an expression for the particle paths as such (those are derivable from the N-S equations, so no loss of generality has occurred9
The Navier-Stokes equations are based on a specific modelling of the relevant forces in the fluid, where in the most common formulation, a) the isotropic pressure has been extracted as an explicity term b) gravity is included and c) A viscous stress-strain rate tensor model has been adopted, with a constant viscosity parameter.
generalizations can be made for hydro-magnetic flows, the equations as they would appear in a non-inertial frame of reference, and with a variable viscosity, typically linking N-S with the thermodynamical equations, due to viscosity dependence on temperature.
2. the Navier-Stokes problem poses:
Are these equations well-posed, in the sense that they cannot "blow up" at a finite time?
That is, can they, under all conditions be regarded as realistic physical equations? (In REALITY, we "know" that fluids can't get infinite accelerations, if our equations said they would get that, our equations are WRONG, not reality!)
3. The problem of turbulence is, essentially, that macroflow is significantly RANDOMIZED in turbulent flow. This means it is basically impossible to find a sufficiently accurate full (numerical) solution to N-S, and earlier, one sought to improvize and simplify the equations for the behaviour of the mean flow, averaged over time, rather than solve for the full flow. the trouble was, however, that one thereby introduces a pseudo-force term which shows the effect the random flow directly has on the evolution on the mean flow. This pseudo-force term, usually called Reynolds' stress tensor is notoriously hard to model in a good manner.
In newer times, with vastly improved computers, many have chosen to eschew the mean-flow approach altogether, and attack N-S head-on instead.
Here, the resolution problem will occur, because, for example, energy dissipation mainly takes place on microscopic scales, and having a full resolution down to THAT level would overpower the computers we have today and in the future..