MHB Understanding Part (c) of the Protractor Postulate: Explaining r=30

  • Thread starter Thread starter pholee95
  • Start date Start date
pholee95
Messages
9
Reaction score
0
I'm stuck on this problem. Can anyone please help me understand?

Consider the model of geometry where point means rational point in the Euclidean plane and all of our other terms have their normal interpretation. This model doesn't satisfy the Ruler Postulate because there isn't a one-to-one correspondence with R. It also doesn't satisfy part (c) of the Protractor Postulate. Explain why it doesn't satisfy this part of the postulate by considering the line through (0,0) and (1,0), the upper half-plane, and the number r = 30. (Hint: Use a little piece of trig and think about the point E in this case.)

*I know that part (c) of the protractor postulate states this: For each real number r, 0 < r < 180, and for each half-plane H bounded by AB there exists a unique ray AE such that E is in H and μ(angleBAE) = r◦.
 
Mathematics news on Phys.org
pholee95 said:
Consider the model of geometry where point means rational point in the Euclidean plane
I assume this means point with rational coordinates.

pholee95 said:
part (c) of the protractor postulate states this: For each real number r, 0 < r < 180, and for each half-plane H bounded by AB there exists a unique ray AE such that E is in H and μ(angleBAE) = r◦.
A ray is, first of all, a set of points. Are there any points with rational coordinates on the ray that forms $30^\circ$ with the $Ox$ axis?
 
Evgeny.Makarov said:
I assume this means point with rational coordinates.

A ray is, first of all, a set of points. Are there any points with rational coordinates on the ray that forms $30^\circ$ with the $Ox$ axis?

There are none right?
 
pholee95 said:
There are none right?
Right, except $(0,0)$. The axiom requires that at least one point $E$ lies on the ray, which is not the case here. But you have to prove that there are no rational points on the ray.
 
Evgeny.Makarov said:
Right, except $(0,0)$. The axiom requires that at least one point $E$ lies on the ray, which is not the case here. But you have to prove that there are no rational points on the ray.

Ah. I understand it now. Thank you so much for your help!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top