gentsagree
- 93
- 1
Hi,
I am confused on a very basic fact. I can write \xi = (\xi_{1}, \xi_{2}) and a spin rotation matrix as
<br /> U =<br /> \left( \begin{array}{ccc}<br /> e^{-\frac{i}{2}\phi} & 0 \\<br /> 0 & e^{\frac{i}{2}\phi} <br /> \end{array} \right)<br />
A spinor rotates under a 2\pi rotation as
<br /> \xi ' = <br /> \left( \begin{array}{ccc}<br /> e^{-i\pi} & 0 \\<br /> 0 & e^{i\pi} <br /> \end{array} \right)<br /> \left( \begin{array}{c}<br /> \xi_{1} \\<br /> \xi_{2}<br /> \end{array} \right)<br /> =<br /> \left( \begin{array}{ccc}<br /> -\xi_{1} \\<br /> \xi_{2} <br /> \end{array} \right)<br />
which is (-\xi_{1}, \xi_{2}), and not -\xi, so only one component changes sign. Is this correct?
I am confused on a very basic fact. I can write \xi = (\xi_{1}, \xi_{2}) and a spin rotation matrix as
<br /> U =<br /> \left( \begin{array}{ccc}<br /> e^{-\frac{i}{2}\phi} & 0 \\<br /> 0 & e^{\frac{i}{2}\phi} <br /> \end{array} \right)<br />
A spinor rotates under a 2\pi rotation as
<br /> \xi ' = <br /> \left( \begin{array}{ccc}<br /> e^{-i\pi} & 0 \\<br /> 0 & e^{i\pi} <br /> \end{array} \right)<br /> \left( \begin{array}{c}<br /> \xi_{1} \\<br /> \xi_{2}<br /> \end{array} \right)<br /> =<br /> \left( \begin{array}{ccc}<br /> -\xi_{1} \\<br /> \xi_{2} <br /> \end{array} \right)<br />
which is (-\xi_{1}, \xi_{2}), and not -\xi, so only one component changes sign. Is this correct?