Understanding the Refractive Index in QED by Feynman

AI Thread Summary
The refractive index of a material is primarily determined by its ability to form electric or magnetic dipoles in response to applied fields, which is encapsulated in the material's electric permittivity and magnetic permeability. In dielectrics, bound electrons shift under an electric field, creating dipoles that enhance the field, while the polarization is typically proportional to the applied field. External factors like electric fields and temperature can also influence the refractive index. In certain materials, such as crystals or polymers, the polarization can respond anisotropically or non-linearly, complicating the definition of refractive index. Ultimately, under extreme conditions, materials can transition from dielectric to conductive, altering their refractive properties significantly.
jobyts
Messages
226
Reaction score
60
(I'm still reading the QED book by Feynman...)

What property of the material causes a specific refractive index for a particular medium? (in other words, from the FAQ section by ZapperZ, "So the lattice does not absorb this photon and it is re-emitted but with a very slight delay.". How is the delay different between different materials.)
 
Science news on Phys.org
Classically, it comes down to how easily a material can form electric or magnetic dipoles. In a dielectric, for example, when an electric field is applied, the bound electrons will move further away from their host nuclei, forming dipoles which will in turn reinforce that field. For most materials the polarization of the material is proportional to the applied field, and the constant of proportionality is wrapped up into the electric permittivity. Likewise, applied magnetic fields will often induce a proportional response in the magnetic polarization: this is wrapped up into a constant known as the permeability. Together, the permittivity and permeability determine the speed of field propagation through the material, which in turn gives the index.
 
Note too that the refractive index can be influenced by external factors as well such as applied E-field and temperature. The things Manchot mentions don't just affect the refractive index, but also how the refractive index changes as a function of these external factors.

Claude.
 
Yeah, and you should also note that the refractive index may not even be well-defined for some situations. For example, in some materials like crystals or polymers, the polarization responds to an applied field anisotropically, meaning that certain directions are preferred over others. In these cases, the permittivity and index must be described by matrices. In other materials, the polarization responds to an applied field non-linearly, in which case the index is a function of field amplitude. As a matter of fact, all materials are essentially nonlinear for large fields: when a field larger than the breakdown field strength is applied, a dielectric becomes conductive, and all of this goes out the window.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
Back
Top