Understanding the Statement Circled in Red: Solving a Problem

  • Thread starter Thread starter member 731016
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around understanding a specific mathematical statement related to limits and the behavior of functions as \( x \) approaches negative infinity. The participants are examining the implications of dividing by negative values and the conditions under which certain equalities hold true.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the reasoning behind dividing by negative \( x \) and the conditions that must be met for certain mathematical statements to hold, particularly focusing on the case where \( x < 0 \). There is also a discussion about the teacher's method and its implications for the limit process.

Discussion Status

The conversation is ongoing, with participants providing insights and clarifications regarding the conditions under which the mathematical statements are valid. Some participants express understanding while others seek further clarification on specific points raised.

Contextual Notes

There is an emphasis on the assumption that \( x \) is negative, which is crucial for the validity of the mathematical expressions discussed. The original poster recalls a teaching moment that may not have explicitly stated this condition, leading to some confusion.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1676692240288.png

The solution is
1676692285706.png

However, I don't understand the statement circled in red. I don't understand why ## x = - \sqrt{x^2}##? They did not explained why.

I remember a year ago a calculus teacher showed me how to solve this type of problem. They divided the numerator by ##\sqrt{(-x)^2} = \sqrt{(x)^2}## and the denominator by ##-x##. I don't know why you have to divide by negative x for x approaches negative infinity, but this method works and give me the same result as the books method.

Many thanks!
 
Physics news on Phys.org
Remember that this is the case where ## x\lt 0##. Therefore, ##-x## is positive and ##-x = |x| = \sqrt{x^2}##.
 
  • Like
Likes   Reactions: member 731016
FactChecker said:
Remember that this is the case where ## x\lt 0##. Therefore, ##-x## is positive and ##-x = |x| = \sqrt{x^2}##.
Thank you for your reply @FactChecker!

I think I understand now :)
 
Callumnc1 said:
I remember a year ago a calculus teacher showed me how to solve this type of problem. They divided the numerator by ##\sqrt{(-x)^2} = \sqrt{(x)^2}## and the denominator by ##-x##.
You didn't say, but the teacher must have specified that x < 0. Otherwise ##\sqrt{(-x)^2} \ne -x##, so the fraction would essentially be multiplied by -1, which changes the value of the fraction.
 
  • Like
Likes   Reactions: member 731016
Mark44 said:
You didn't say, but the teacher must have specified that x < 0. Otherwise ##\sqrt{(-x)^2} \ne -x##, so the fraction would essentially be multiplied by -1, which changes the value of the fraction.
Yes. The solution included in post #1 says "we must remember that for ##x \lt 0## ...".
 
  • Like
Likes   Reactions: member 731016
FactChecker said:
Yes. The solution included in post #1 says "we must remember that for ##x \lt 0## ...".
I understand that, but I was responding to the part where the OP was remembering an event from a year ago. It wasn't stated that the teacher had specified then that x must be negative.
 
  • Like
Likes   Reactions: member 731016 and FactChecker
Mark44 said:
You didn't say, but the teacher must have specified that x < 0. Otherwise ##\sqrt{(-x)^2} \ne -x##, so the fraction would essentially be multiplied by -1, which changes the value of the fraction.
Thank you for your replies @Mark44 and @FactChecker !

I think my teacher said divide by numerator and denominator by (-x)^n where n is the highest degree of the denominator for taking the limit as x approaches negative infinity.

Many thanks!
 
Callumnc1 said:
I think my teacher said divide by numerator and denominator by (-x)^n where n is the highest degree of the denominator for taking the limit as x approaches negative infinity.
That's not what my comment was about. For ##\sqrt{(-x)^2}## to be equal to -x, the teacher must have said that x < 0.
 
  • Like
Likes   Reactions: member 731016
Mark44 said:
teacher must have said that x < 0.
Yes, but if the teacher says "as x approaches negative infinity", as he did, that takes care of itself.
 
  • Like
Likes   Reactions: member 731016

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
2
Views
1K
Replies
7
Views
1K