- #1

- 2,546

- 340

- Homework Statement
- I would like insight on the highlighted part in red.

- Relevant Equations
- stats

Reference; https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test#:~:text=The Wilcoxon signed-rank test,-sample Student's t-test.

I have managed to go through the literature (it is pretty straight forward). In general Wilcoxon-rank method applies to data with unequal variances otherwise student t- test would be sufficient.

Now looking at the signed ranks given (check attachment) we have;

##[1,2,3,4,5,6,7,8,9,10,11,-12]##

In my understanding, we shall have ##W^{+} =66, W^{-}=12## and we also know that,

##\dfrac {n(n+1)}{2}=\dfrac {12(13)}{2}=78=[W^{+}+W^{-}]##

therefore it follows that, test statistic ##W=12##.

Now to my question, how did they arrive at p-value ##\left[\dfrac{55}{2^{12}}\right]##?

Secondly, how did they arrive at the given signed-ranks without the 'ordered absolute value of differences'?

thanks...

I have managed to go through the literature (it is pretty straight forward). In general Wilcoxon-rank method applies to data with unequal variances otherwise student t- test would be sufficient.

Now looking at the signed ranks given (check attachment) we have;

##[1,2,3,4,5,6,7,8,9,10,11,-12]##

In my understanding, we shall have ##W^{+} =66, W^{-}=12## and we also know that,

##\dfrac {n(n+1)}{2}=\dfrac {12(13)}{2}=78=[W^{+}+W^{-}]##

therefore it follows that, test statistic ##W=12##.

Now to my question, how did they arrive at p-value ##\left[\dfrac{55}{2^{12}}\right]##?

Secondly, how did they arrive at the given signed-ranks without the 'ordered absolute value of differences'?

thanks...

#### Attachments

Last edited: