MHB Unit sum composed of unit fractions

AI Thread Summary
The discussion centers on whether a unit sum composed of unit fractions must include 1/2. Initial thoughts suggest that it might be necessary, but examples demonstrate that it is not. The Erdos-Graham problem is referenced to support the idea that distinct unit fraction representations can exist without including 1/2. Additionally, participants clarify that there are infinitely many representations of non-unit fractions as sums of distinct unit fractions. Ultimately, it is established that a unit sum can be achieved without the inclusion of 1/2.
poissonspot
Messages
39
Reaction score
0
Is it necessary for a unit sum composed of unit fractions to include 1/2? Doing maple runs this seems to be the case, but it is not evident to me how this could be

Edit: In fact it seems it could not be, given the Erdos Graham problem Erd?s?Graham problem - Wikipedia, the free encyclopedia

But considering an arbitrary fraction and one minus it, it seems the unit fraction representation of one of these two's parts is bound to include 1/2.

I feel a bit mixed up here.

EditEdit:1/3+1/4+1/5+1/6+1/20 does it. I think I thought that distinct unit fraction representations were unique. But this is not the case clearly.
 
Last edited:
Mathematics news on Phys.org
Is it necessary for a unit sum composed of unit fractions to include 1/2?

No. 1/3 + 1/3 + 1/3 = 1.

EDIT : Nontrivial 1/3 + 1/4 + 1/5 + 1/6 + 1/20 = 1.
 
mathbalarka said:
No. 1/3 + 1/3 + 1/3 = 1.

I'm afraid I'm being awfully careless in the statement. thank you,
 
I also gave a non-trivial example there, you might want to look at that.
 
mathbalarka said:
I also gave a non-trivial example there, you might want to look at that.

Thanks. I figured that out and edited the first post just before you posted.

I did not think that there are infinitely many representations of a non unit fraction in terms of distinct unit fractions and so thought that given one I had the only one that would do so.
 
conscipost said:
Given one I had the only one that would do so.

$$\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{15} + \frac{1}{33} + \frac{1}{45} + \frac{1}{385} = 1$$

There exists trivially infinitely many unit fractions with not just without 2 but with odd denominator which sum up to unity.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top