MHB Unknownnn's question from Yahoo Answers (re: finite math/set theory)

  • Thread starter Thread starter Chris L T521
  • Start date Start date
  • Tags Tags
    Finite Theory
Click For Summary
The problem involves finding the number of elements in the union of two subsets A and B from a universal set U. Given the values n(U) = 130, n(A′) = 55, n(B′) = 69, and n(A∩B) = 23, the solution utilizes set theory identities. By applying the equation n(A∪B) = n(A) + n(B) - n(A∩B) and using the complements, the calculation leads to n(A∪B) = 113. The final answer is that the number of elements in the union of sets A and B is 113.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question:

Finite math problem involving venn diagrams? said:
Let U be a universal set with subsets A and B such that n(U) = 130, n(A′) = 55, n(B′) = 69, and n(A∩B) = 23. Find n(A∪B).

n(A∪B) = halp? plox

Here is a link to the question:

Finite math problem involving venn diagrams? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hi Unknownnn,

We will use the following identities/equations in our computation:

- $n(A^{\prime})=n(U)-n(A)$;
- $n(A\cup B)=n(A)+n(B)-n(A\cap B)$
- $n((A\cap B)^{\prime})=n(A^{\prime}\cup B^{\prime})$ and $n((A\cup B)^{\prime})=n(A^{\prime}\cap B^{\prime})$ (De Morgan's Laws)

To get the answer we seek, let us use the second equation, but with complements instead of regular sets since we know the values of $n(A^{\prime})$ and $n(B^{\prime})$:
\[n(A^{\prime}\cup B^{\prime})=n(A^{\prime})+n(B^{\prime})-n(A^{\prime}\cap B^{\prime}).\]
Using the equations I provided above, we see that
\[\begin{aligned}n(A^{\prime}\cup B^{\prime})=n((A\cap B)^{\prime})= n(U)-n(A\cap B) &= n(A^{\prime})+n(B^{\prime}) -n((A\cup B)^{\prime})\\ &= n(A^{\prime})+n(B^{\prime}) -(n(U)-n(A\cup B))\\ &= n(A^{\prime})+n(B^{\prime})-n(U)+n(A\cup B)\end{aligned} \]

Solving for $n(A\cup B)$ gives us
\[n(A\cup B)=2n(U)-n(A^{\prime})-n(B^{\prime})-n(A\cap B)=260-55-69-23=113\]

Thus, $n(A\cup B)=113$.
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K