chisigma
Gold Member
MHB
- 1,627
- 0
chisigma said:Posted on 05 23 2012 on www.artofproblemsolving.com by the member pablo_roand not yet properly solved…
Let X and Y be two independent random variables with p.d.f. $f_{x}(*)$ and $f_{y}(*)$. Find the p.d.f. of the r.v. U=X Y and V=X/Y...
Let compute first the 'product distribution' of the r.v. U=X Y. Introducing the marginal variable V we can write...
$\displaystyle U=X\ Y, V=Y \implies X= \frac{U}{V}, Y=V $ (1)
... and compute the Jacobian of the (1) we obtain $\displaystyle J= \frac{1}{|V|}$. Now if we indicate with $\displaystyle f_{x,y}(*,*)$ the joined p.d.f. of X and Y we obtain...
$\displaystyle f_{u}(u)= \int_{-\infty}^{+\infty} \frac{1}{|v|}\ f_{x.y} (\frac{u}{v}, v)\ dv$ (2)
If we want the 'ratio distribution' instead of the 'product distribution' we only have to set in (1) $\displaystyle U=\frac{X}{Y} \implies X = U V$ obtaining...
$\displaystyle f_{u}(u)= \int_{-\infty}^{+\infty} |v|\ f_{x.y} (u\ v, v)\ dv$ (3)
Kind regards
$\chi$ $\sigma$