Undergrad Unveiling the Proof of Induced EMF Formula: E = ∫ (v x B) · dl

Click For Summary
The formula E = ∫(v × B) · dl is derived from the Lorentz force and represents the energy per unit charge in electromagnetic fields. It is applicable in general scenarios, particularly when considering the relationship between electric fields and magnetic fields as described by Faraday's Law. The integral form of Faraday's Law can be expressed in terms of magnetic flux and is valid for time-dependent surfaces. The discussion emphasizes the importance of using the correct notation, as E represents potential difference or electromotive force (emf). Understanding this connection is crucial for applying the formula accurately in electrodynamics.
phantomvommand
Messages
287
Reaction score
39
TL;DR
Why is ##E = \int (\vec v \times \vec B) \cdot d \vec l##?
Why is ##E = \int (\vec v \times \vec B) \cdot d \vec l##? This seems to be a general formula, and I would like to know its proof.

Thanks for all the help.
 
Physics news on Phys.org
Are you familiar with the Lorentz force ?
Then the energy per unit charge (in SI units: Joule/Coulomb) follows from ##\int {\vec F\over q} \cdot d\vec l## .

PS it's a bit confusing to use the symbol ##E## for this; it's actually a potential difference (or emf)
$$\text {EMF} = V_{AB} = \int_A^B {\vec F\over q} \cdot d\vec l $$##\ ##
 
  • Like
Likes phantomvommand
BvU said:
Are you familiar with the Lorentz force ?
Then the energy per unit charge (in SI units: Joule/Coulomb) follows from ##\int \vec F \cdot d\vec l## .

##\ ##
Yes, I am. Thanks for the help, I never realized this connection. I suppose this formula can be used in general? Would I be more accurate to use a loop integral instead of an integral?
 
phantomvommand said:
Yes, I am. Thanks for the help, I never realized this connection. I suppose this formula can be used in general? Would I be more accurate to use a loop integral instead of an integral?
The expression is correct, so it should be universally applicable (but for a loop I expect to get 0 : ##\ V_{AA}\equiv 0## ) .

Check out a few of the sections in the link (Force on a current-carrying wire, EMF).

##\ ##
 
As anything in electrodynamics the formula can be derived from Maxwell's equations in differential form, which are always valid. Here one integrates Faraday's Law (in SI units)
$$\vec{\nabla} \times \vec{E}=-\partial_t \vec{B}$$
over a surface ##A## with boundary curve ##\partial A## with the usual orientation of the path given by the right-hand rule.
$$\int_A \mathrm{d}^2 \vec{f} \cdot \vec{\nabla} \times \vec{E}=\int_{\partial A} \mathrm{d} \vec{r} \cdot \vec{E}=-\int_A \mathrm{d}^2 \vec{f} \cdot \partial_t \vec{B}.$$
Now the usual integral form of Faraday's Law is written in terms of the magnetic flux
$$\Phi_{B}=\int_{A} \mathrm{d}^2 \vec{f} \cdot \vec{B}.$$
If now the surface ##A## and its boundary ##\partial A## are time-dependent you have to use Reynold's transport theorem for surface integrals to take the time derivative. Together with ##\vec{\nabla} \cdot \vec{B}## this leads to the ONLY generally correct form of Faraday's Law in integral form:
$$\mathcal{E}=\int_{\partial A} \mathrm{d} \vec{r} \cdot (\vec{E}+\vec{v} \times \vec{B})=-\dot{\Phi}_B=-\frac{\mathrm{d}}{\mathrm{d} t} \Phi_B.$$
For a derivation of the corresponding Reynold's transport theorem, see

https://en.wikipedia.org/wiki/Faraday's_law_of_induction#Proof
 
  • Like
Likes phantomvommand
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
869
  • · Replies 11 ·
Replies
11
Views
6K
Replies
7
Views
16K
Replies
12
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K