Upper limit for black hole’s rotational speed

Eagle9
Messages
238
Reaction score
10
From wikipedia:
Rotating black holes are formed in the gravitational collapse of a massive spinning star or from the collapse of a collection of stars or gas with a total non-zero angular momentum. As most stars rotate it is expected that most black holes in nature are rotating black holes. In late 2006, astronomers reported estimates of the spin rates of black holes in the Astrophysical Journal. A black hole in the Milky Way, GRS 1915+105, may rotate 1,150 times per second, approaching the theoretical upper limit.
Rotating black hole
So, the black holes have got the upper limit for rotating? Could somebody explain me why? I can understand one reason: due to special theory of relativity the event’s horizon’s circular/linear speed cannot be more than speed of light, right? Or maybe there is another reason for this upper limit? :rolleyes:
 
Physics news on Phys.org
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top