Solving the URN Problem: Finding the Probability of Drawing a White Ball

  • Thread starter Thread starter stuttgart311
  • Start date Start date
AI Thread Summary
The discussion centers on calculating the probability of drawing a white ball from the nth urn after transferring balls between urns. The probability is expressed as P[Xn=w], which is derived using a recurrence relation based on the outcomes from the previous urn. For two urns, the probabilities depend on whether the previous ball drawn was white or black, leading to specific formulas for P[Xn=w]. The conclusion suggests that regardless of the number of urns, the probability simplifies to a consistent formula involving the initial counts of white and black balls. The analysis indicates that the complexity of the problem may not be as high as initially perceived.
stuttgart311
Messages
2
Reaction score
0
Plz tell the solution to this problem


Each of n urns contains a white balls and b black balls; the urns are numbered 1,2,
. . . , n. One randomly selected ball is transferred from the firrst urn into the second,
then another from the second into the third, and so on. Finally a ball is drawn at
random from the nth urn. What is the probability that it is white
 
Physics news on Phys.org
Try solving the case n=2.
 
Let Xn denote the color of the ball selected from the nth urn.

The probability that you are looking for is P[Xn=w]. We have P[Xn=w]=P[Xn=w|Xn-1=w]P[Xn-1=w] + P[Xn=w|Xn-1=b]P[Xn-1=b].

We know P[Xn-1=b]=1-P[Xn-1=w]. So we have P[Xn=w]=P[Xn=w|Xn-1=w]P[Xn-1=w] + P[Xn=w|Xn-1=b](1-P[Xn-1=w]).

Here P[Xn=w|Xn-1=w] denotes the probability of drawing white from the nth urn given that a white ball has been drawn from the previous urn. So it is equal to (a+1)/(a+b+1). And P[Xn=w|Xn-1=b] is the probability of choosing a white ball from the nth urn given that we had a black ball from the previous urn; so it is a/(a+b+1). If put these values into the equality for P[Xn=w], if I am not making a mistake, we obtain,

P[Xn=w]=P[Xn-1=w]/(a+b+1) + a/(a+b+1),

which is a recurrence relation with initial value P[X1=w]=a/(a+b), which can be solved to obtain the solution (which also makes me think there should be a much easier way to find that probability.)
 
Is this true?

All urns have the same amount of balls to start with: a+b
Every time a ball is drawn there is probability a/(a+b) for the first urn and a/(a+b+1) or (a+1)/(a+b+1) for every next urn.
Depending on which color the ball has a or b is increased by one.
So it doesn't seem to matter how many urns there are!.
It is always a+1 or b+1 to be divided by (a+b+1),
so the probability for urn n = P(W) = (a+a/(a+b))/(a+b+1).
Does that make sense?

grtz,

Marc
 
Last edited:
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top