Use substitution to solve the definite integral

Click For Summary
The discussion focuses on solving the definite integral using substitution, specifically transforming the integral of (1-x^2)^(1.5) into trigonometric terms. Participants clarify the correct identities for cos^4θ and address a common misunderstanding regarding the transformation of (u^2)^(3/2). The conversation emphasizes the importance of accurately applying trigonometric identities and the correct substitution for dx. Ultimately, the participants converge on the correct approach to evaluate the integral, ensuring all necessary components are included. The exchange highlights the collaborative effort to clarify mathematical concepts and resolve potential errors in the process.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
integration
1712912514580.png


I have ##1-x^2 = 1- \sin^2 θ = \cos^2 θ## and ## dx =cos θ dθ##

##\int_0^{0.5} (1-x^2)^{1.5} dx = \int_0^{\frac{π}{6}} [cos ^2θ]^\frac{3}{2} dθ = \int_0^{\frac{π}{6}} [cos ^4θ] dθ##

Suggestions on next step.
 
Last edited:
Physics news on Phys.org
Use <br /> \cos^2 \theta \equiv \tfrac12(1 + \cos 2\theta) twice.
 
  • Informative
  • Like
Likes MatinSAR and chwala
pasmith said:
Use <br /> \cos^2 \theta \equiv \tfrac12(1 + \cos 2\theta) twice.
that is ##\cos^4θ = \dfrac{1}{2}(1+\cos 4θ) ?##
 
chwala said:
that is ##\cos^4θ = \dfrac{1}{2}(1+\cos 4θ) ?##
No. Write it ##\cos^4\theta = (\cos^2\theta)^2##, apply the identity and expand the square.
 
  • Informative
  • Like
Likes MatinSAR and chwala
Orodruin said:
No. Write it ##\cos^4\theta = (\cos^2\theta)^2##, apply the identity and expand the square.
Thanks, i was confusing... the correct identity is

##\cos^{2} 2θ = \dfrac{1}{2}(1+\cos 4θ) ##

anyway i realized that I will still need it in doing my work ;

##\int_0^{\frac{π}{6}} [cos ^4θ] dθ= \int_0^{\frac{π}{6}} \left[\dfrac{1}{4} + \dfrac{\cos 2θ}{2} + \dfrac{\cos^{2} 2θ}{4}\right] dθ##

## \int_0^{\frac{π}{6}} \left[\dfrac{1}{4} + \dfrac{\cos 2θ}{2} + \dfrac{\cos^{2} 2θ}{4}\right] dθ= \int_0^{\frac{π}{6}} \left[\dfrac{1}{4} + \dfrac{\cos 2θ}{2} + \dfrac{1}{8} +\dfrac{\cos 4θ}{8}\right] dθ##

## =\left[\dfrac{3θ}{8}+ \dfrac{\sin 2θ}{4} + \dfrac{\sin 4θ}{32}\right]_0^{\frac{π}{6}}
##

This will lead me in the right direction. Cheers!
 
No one seems to have caught this:
chwala said:
##\int_0^{\frac{π}{6}} [cos ^2θ]^\frac{3}{2} dθ = \int_0^{\frac{π}{6}} [cos ^4θ] dθ##
Hold on there! ##(u^2)^{3/2} \ne u^4##!
 
Mark44 said:
No one seems to have caught this:

Hold on there! ##(u^2)^{3/2} \ne u^4##!
Probably because it (the first expression) is a typo. It is missing the ##\cos\theta## from the ##dx##.
 
  • Like
Likes PhDeezNutz and chwala
Mark44 said:
No one seems to have caught this:

Hold on there! ##(u^2)^{3/2} \ne u^4##!
Substitution for ##dx## using change of variables... It should be fine.

Let me check that again.
 
Orodruin said:
Probably because it (the first expression) is a typo. It is missing the ##\cos\theta## from the ##dx##.
Correct. Cheers guys.
 
  • #10
chwala said:
Correct.
Did you doubt it? 😛
 
  • Haha
  • Like
Likes SammyS and chwala