Amer
- 259
- 0
if we cut a right cone parallel to the base having a two radius r and R The picture
View attachment 407
I want to use the volume of revolution around the y-axis
we have the line
y - 0 = \dfrac{h}{r-R} (x - R)
x = \frac{r-R}{h} y +R
The volume will be
\pi \int_{0}^{h} \left(\frac{r-R}{h} y + R\right)^2 dy
\pi \int_{0}^{h} \frac{(r-R)^2y^2}{h^2} + \frac{2R(r-R)y}{h} + R^2 dy
now i just have to evaluate the integral, did i miss something ?
View attachment 407
I want to use the volume of revolution around the y-axis
we have the line
y - 0 = \dfrac{h}{r-R} (x - R)
x = \frac{r-R}{h} y +R
The volume will be
\pi \int_{0}^{h} \left(\frac{r-R}{h} y + R\right)^2 dy
\pi \int_{0}^{h} \frac{(r-R)^2y^2}{h^2} + \frac{2R(r-R)y}{h} + R^2 dy
now i just have to evaluate the integral, did i miss something ?