B Using SR & Curved Coordinates for Time Calculation

sqljunkey
Messages
181
Reaction score
8
Someone told me that I don't need the whole mechanics of GR to be able to calculate the proper time in an accelerated frame of reference. I can just use SR but with curved coordinates and then integrate for time. But he didn't give me a reference where I could find the formula to do this. How do you use Lorentz transformation with curved coordinates? Is this true? Anyone has a reference for it?

Thanks
 
Physics news on Phys.org
sqljunkey said:
Someone told me that I don't need the whole mechanics of GR to be able to calculate the proper time in an accelerated frame of reference. I can just use SR but with curved coordinates and then integrate for time. But he didn't give me a reference where I could find the formula to do this.
You can use equation 2 here:

https://en.m.wikipedia.org/wiki/Proper_time

You need to have ##ds^2## which is known as the arc length, as well P, both in terms of the chosen coordinates.
 
  • Like
Likes vanhees71
sqljunkey said:
How do you use Lorentz transformation with curved coordinates?
You don't. The Lorentz transformation is, by definition, a transformation between inertial frames. However, you do not even need curvilinear coordinates to compute proper times of accelerated observers. You can just apply
$$
\tau = \int_{t_1}^{t_2} \sqrt{1 - v(t)^2/c^2}\, dt.
$$
However, you can of course define a coordinate system where your accelerated observer is at rest, but you do not need to.
 
  • Like
Likes vanhees71 and PeroK
In case Orodruin's answer isn't clear, he is noting that if your velocity in some inertial coordinate system is ##v## at coordinate time ##t## then in the elementary time from ##t## to ##t+dt## your clock advances ##d\tau=dt/\gamma##, then integrating. Or you can start from the expression for the interval and get the same result.
 
  • Like
Likes vanhees71
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top