Using the Divergence Theorem on the surface of a sphere

Click For Summary

Homework Help Overview

The discussion revolves around applying the divergence theorem to an integral over the surface of a sphere, specifically involving the expression \(\oint_{s} \frac{1}{|r-r'|}da'\). Participants explore the implications of the theorem in the context of scalar and vector results, as well as the setup of the problem involving position vectors.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants question the specific variation of the divergence theorem being used and whether the final result is a scalar or vector. There is discussion about the nature of the integrand and the surface element, as well as the notation used for position vectors.

Discussion Status

The conversation is ongoing, with participants seeking clarification on the divergence theorem's application and the nature of the integral. Some have offered insights into the types of functions involved and the potential ambiguity in notation, indicating a productive exploration of the topic.

Contextual Notes

There is mention of confusion regarding the integration process and the definitions of the variables involved, particularly in relation to the divergence and gradient operations. Participants are also addressing potential errors in notation and assumptions about the integrand.

TheGreatDeadOne
Messages
22
Reaction score
0
Homework Statement
Let a sphere of radius r_0 be centered at the origin, and r′ the position vector of a point p′ within the sphere or under its surface S. Let the position vector r be an arbitrary fixed point P.
Relevant Equations
Divergence theorem (it's not really necessary, but I'm trying to solve it that way)
The integral that I have to solve is as follows:

\oint_{s} \frac{1}{|r-r'|}da', \quad\text{ integrating with respect to r '}, integrating with respect to r'

Then I apply the divergence theorem, resulting in:

\iiint \limits _{v} \nabla \cdot \frac{1}{|r-r'|}dv' = \int_{0}^{r_0}\int_{0}^{\pi}\int_{0}^{2\pi} \frac{(r-r')}{|r-r'|^3}r'^2\sin{\theta}d\theta d\phi dr'

Integrating θ and φ we have:

4\pi \int_{0}^{r_0} \frac{(r-r')}{|r-r'|^3}r'^2 dr'

And in that part I got stuck. I didn't try to solve it by integrating directly, because I'm still a bit confused. I know the result is:
\frac{4\pi r^{2}_{0}}{r} \quad\text{for} \quad r\geq r_0 \quad and \quad 4\pi r^{2}_{0}\quad for \quad r\leq r_0
 
Physics news on Phys.org
I am a bit confused on which variation of divergence theorem you are using. Can you write it explicitly?

The final result is a scalar or a vector? It seems it is a scalar by what you say at the last sentence, but the divergence theorem as you set it up in the above equation it seems to give a vector result (r and r' are vectors right)?
 
TheGreatDeadOne said:
Homework Statement:: Let a sphere of radius r_0 be centered at the origin, and r′ the position vector of a point p′ within the sphere or under its surface S. Let the position vector r be an arbitrary fixed point P.
Relevant Equations:: Divergence theorem (it's not really necessary, but I'm trying to solve it that way)

The integral that I have to solve is as follows:

\oint_{s} \frac{1}{|r-r'|}da', \quad\text{ integrating with respect to r '}, integrating with respect to r'
What exactly is the vector-vector function you have to integrate over the surface of the sphere?
 
Delta2 said:
I am a bit confused on which variation of divergence theorem you are using. Can you write it explicitly?

The final result is a scalar or a vector? It seems it is a scalar by what you say at the last sentence, but the divergence theorem as you set it up in the above equation it seems to give a vector result (r and r' are vectors right)?
it's a scalar (lol I saw the error here, i forgot to fix it here)
 
ehild said:
What exactly is the vector-vector function you have to integrate over the surface of the sphere?
Delta2 said:
I am a bit confused on which variation of divergence theorem you are using. Can you write it explicitly?

The final result is a scalar or a vector? It seems it is a scalar by what you say at the last sentence, but the divergence theorem as you set it up in the above equation it seems to give a vector result (r and r' are vectors right)?
Sorry, I forgot to organize and correct something here. 1 / | r-r '| is a scalar, in my papers I was disregarding the module, forget that part of the divergence theorem.
 
Better we take things from start, you say you want to calculate $$\oint \frac{1}{|r-r'|}da'$$. The integrand is a scalar as you said, but what about da' is it scalar or vector (with direction the normal to the surface element da').

I have in mind two variations of the divergence theorem:
  1. $$\iiint_V \nabla\cdot\vec{F} dV=\oint_{\partial V} \vec{F}\cdot d\vec{A}$$
  2. $$\iiint_V \nabla f dV=\oint_{\partial V} f d\vec{A}$$
In 1. ##\vec{F}## is a vector but because we take the divergence in the LHS (and the dot product in the RHS) the final result is scalar.
in 2.## f## is a scalar but because we take the gradient of ##f ## in the LHS (and the multiplication of## f## by the vector surface element ##d\vec{A}## in the RHS) the final result is a vector

So which one are you using. I think you are using 2. with ##f=\frac{1}{|\vec{r}-\vec{r'}|}## but then the final result is a vector not a scalar.

But then again if I strictly follow your notation, you seem to take the divergence of a scalar, you write $$\nabla\cdot\frac{1}{|r-r'|}$$ while you should probably mean the gradient there.

I have to say this, in this thread and in the other thread with the gradient, your notation is a bit ambiguous, you seem to use the symbol r (or r') to denote both the position vector and the magnitude of the position vector interchangeably.
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K