Using Variational Principle to solve ground state energy

Click For Summary

Homework Help Overview

The discussion revolves around using the variational principle to determine the ground state energy of a quantum system. The original poster describes their attempts to construct a trial wave function and calculate the corresponding matrix, ultimately leading to a cubic equation for energy.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to use a trial state expressed as a linear combination of basis states and calculates a determinant to find energy solutions. Some participants question the expectation of rational solutions and clarify the nature of the roots of the cubic equation. Others discuss the application of the variational method and its connection to the problem.

Discussion Status

The discussion is ongoing, with participants verifying calculations and questioning the assumptions made regarding the nature of the solutions. There is a focus on ensuring the correct application of the variational principle and the validity of the original poster's approach.

Contextual Notes

Participants note the potential constraints of the problem, including the expectation of integer solutions and the implications of the professor's exam modeling based on homework problems. The original poster expresses concern about the lack of rational solutions and the implications for their understanding of the variational method.

1missing
Messages
14
Reaction score
0
Homework Statement
A certain Hamiltonian can be expressed as: ##\hat H = | \varphi_1 \rangle \langle \varphi_1| + 2 | \varphi_2 \rangle \langle \varphi_2| + 3 | \varphi_3 \rangle \langle \varphi_3| ##

where, ##| \varphi_1 \rangle## , ##| \varphi_2 \rangle## , ##| \varphi_3 \rangle## are normalized but not fully orthogonal.

##\langle \varphi_1 | \varphi_2 \rangle = \langle \varphi_2 | \varphi_1 \rangle = \langle \varphi_2 | \varphi_3 \rangle = \langle \varphi_3 | \varphi_2 \rangle = \frac {1} {2}##

##\langle \varphi_1 | \varphi_3 \rangle = \langle \varphi_3 | \varphi_1 \rangle = 0##
Relevant Equations
1: ##E_\phi = \frac { \langle \phi | \hat H | \phi \rangle } { \langle \phi | \phi \rangle } ##

2: ##\sum_{j=1}^n (H_{ij} - ES_{ij} ) C_j = 0## , i = 1, 2,..., n
First I picked an arbitrary state ##|ϕ⟩=C_1|φ_1⟩+C_2|φ_2⟩+C_3|φ_3⟩## and went to use equation 1. Realizing my answer was a mess of constants and not getting me closer to a ground state energy, I abandoned that approach and went with equation two.

I proceeded to calculate the following matrix:
##\begin{pmatrix}

( \frac {3} {2} - E) & ( \frac {3} {2} - \frac {E} {2} ) & ( \frac {1} {2} ) \\

( \frac {3} {2} - \frac {E} {2} ) & ( 3 - E ) & ( \frac {5} {2} - \frac {E} {2} ) \\

( \frac {1} {2} ) & ( \frac {5} {2} - \frac {E} {2} ) & ( \frac {7} {2} - E )

\end{pmatrix}\vec C = 0##

Calculating the determinant, I end up with ##E^3 - 6E^2 + 9E - 3 = 0## which doesn't seem to have a rational solution. I must've gone through the calculation half a dozen times now, and confirmed with my professor that equation 2 was the one I should use, but I'm just not seeing how I'm supposed to find a solution.
 
Physics news on Phys.org
1missing said:
I end up with ##E^3 - 6E^2 + 9E - 3 = 0## which doesn't seem to have a rational solution.
Why do you expect the solutions to be rational? Or did you mean real instead of rational? The equation does have 3 real solutions.

I don't see how any variational method is being used here.
 
TSny said:
Why do you expect the solutions to be rational? Or did you mean real instead of rational? The equation does have 3 real solutions.

I don't see how any variational method is being used here.
He usually models his exam questions off the homework problems he assigns. If he gave this problem on the exam there wouldn't be any way for me to solve for those roots, which made me think I messed up somewhere. If there were at least one integer solution, that term could be factored out by polynomial long division and I'd be left with a solvable quadratic for the other two.

He called the method "trial states as linear combinations of basis states". He starts with the variational principle, takes the derivative with respect to Ci, and sets it to zero. From that he derives equation 2.
 
OK, that sounds good. I checked the entries for your matrix and the equation coming from setting the determinant equal to zero. I get the same results. I don't see anything wrong with your work.
 
  • Like
Likes   Reactions: Einstein44

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
29
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K