Using Variational Principle to solve ground state energy

Click For Summary
SUMMARY

The discussion centers on using the variational principle to solve for ground state energy in quantum mechanics. The participant initially attempted to use an arbitrary state represented as a linear combination of basis states but switched to a matrix formulation based on equation two. The resulting cubic equation, ##E^3 - 6E^2 + 9E - 3 = 0##, was confirmed to have three real solutions, although the participant expressed concern over the lack of rational solutions. The method discussed involves trial states as linear combinations of basis states, emphasizing the importance of correctly applying the variational principle.

PREREQUISITES
  • Understanding of the variational principle in quantum mechanics
  • Familiarity with linear algebra, specifically matrix determinants
  • Knowledge of polynomial equations and their solutions
  • Experience with quantum state representations and linear combinations
NEXT STEPS
  • Study the application of the variational principle in quantum mechanics
  • Learn how to calculate determinants of matrices in quantum systems
  • Explore methods for finding roots of polynomial equations, including numerical techniques
  • Investigate the concept of trial states and their role in variational methods
USEFUL FOR

Students and researchers in quantum mechanics, particularly those focusing on ground state energy calculations and variational methods. This discussion is beneficial for anyone looking to deepen their understanding of quantum state representations and polynomial solutions in this context.

1missing
Messages
14
Reaction score
0
Homework Statement
A certain Hamiltonian can be expressed as: ##\hat H = | \varphi_1 \rangle \langle \varphi_1| + 2 | \varphi_2 \rangle \langle \varphi_2| + 3 | \varphi_3 \rangle \langle \varphi_3| ##

where, ##| \varphi_1 \rangle## , ##| \varphi_2 \rangle## , ##| \varphi_3 \rangle## are normalized but not fully orthogonal.

##\langle \varphi_1 | \varphi_2 \rangle = \langle \varphi_2 | \varphi_1 \rangle = \langle \varphi_2 | \varphi_3 \rangle = \langle \varphi_3 | \varphi_2 \rangle = \frac {1} {2}##

##\langle \varphi_1 | \varphi_3 \rangle = \langle \varphi_3 | \varphi_1 \rangle = 0##
Relevant Equations
1: ##E_\phi = \frac { \langle \phi | \hat H | \phi \rangle } { \langle \phi | \phi \rangle } ##

2: ##\sum_{j=1}^n (H_{ij} - ES_{ij} ) C_j = 0## , i = 1, 2,..., n
First I picked an arbitrary state ##|ϕ⟩=C_1|φ_1⟩+C_2|φ_2⟩+C_3|φ_3⟩## and went to use equation 1. Realizing my answer was a mess of constants and not getting me closer to a ground state energy, I abandoned that approach and went with equation two.

I proceeded to calculate the following matrix:
##\begin{pmatrix}

( \frac {3} {2} - E) & ( \frac {3} {2} - \frac {E} {2} ) & ( \frac {1} {2} ) \\

( \frac {3} {2} - \frac {E} {2} ) & ( 3 - E ) & ( \frac {5} {2} - \frac {E} {2} ) \\

( \frac {1} {2} ) & ( \frac {5} {2} - \frac {E} {2} ) & ( \frac {7} {2} - E )

\end{pmatrix}\vec C = 0##

Calculating the determinant, I end up with ##E^3 - 6E^2 + 9E - 3 = 0## which doesn't seem to have a rational solution. I must've gone through the calculation half a dozen times now, and confirmed with my professor that equation 2 was the one I should use, but I'm just not seeing how I'm supposed to find a solution.
 
Physics news on Phys.org
1missing said:
I end up with ##E^3 - 6E^2 + 9E - 3 = 0## which doesn't seem to have a rational solution.
Why do you expect the solutions to be rational? Or did you mean real instead of rational? The equation does have 3 real solutions.

I don't see how any variational method is being used here.
 
TSny said:
Why do you expect the solutions to be rational? Or did you mean real instead of rational? The equation does have 3 real solutions.

I don't see how any variational method is being used here.
He usually models his exam questions off the homework problems he assigns. If he gave this problem on the exam there wouldn't be any way for me to solve for those roots, which made me think I messed up somewhere. If there were at least one integer solution, that term could be factored out by polynomial long division and I'd be left with a solvable quadratic for the other two.

He called the method "trial states as linear combinations of basis states". He starts with the variational principle, takes the derivative with respect to Ci, and sets it to zero. From that he derives equation 2.
 
OK, that sounds good. I checked the entries for your matrix and the equation coming from setting the determinant equal to zero. I get the same results. I don't see anything wrong with your work.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
29
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K