1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Variable Magnetic field bound in a cylindrical region

  1. Apr 13, 2013 #1
    1. The problem statement, all variables and given/known data
    There is a uniform but variable magnetic field ##\vec{B}=(B_0 t)(-\hat{k})##, in a cylindrical region, whose boundary is described by ##x^2+y^2=a^2##. ##\displaystyle \int_P^{Q} \vec{E} \cdot \vec{dy}## is (see attachment 1)
    A)0
    B)##\frac{\pi}{4}(B_0 a^2)##
    C)##-\frac{\pi}{8}(B_0 a^2)##
    D)##\frac{\pi}{8}(B_0 a^2)##


    2. Relevant equations



    3. The attempt at a solution
    (see attachment 2)
    The electric field produced will be in anticlockwise direction. At a distance y from P, the electric field can be calculated using Gauss's law.
    [tex]E \cdot 2\pi \sqrt{4a^2+y^2}=B_0 \pi a^2[/tex]
    [tex]E=\frac{B_0 a^2}{2\sqrt{4a^2+y^2}}[/tex]

    Since y is in the vertical direction, we need to only consider the vertical component to evaluate the integral asked in the question.
    [tex]\int_{P}^{Q} \vec{E}\cdot \vec{dy}=\int_0^{2a} E\cos \theta dy[/tex]
    [tex]=\int_0^{2a} \frac{B_0 a^2}{2\sqrt{4a^2+y^2}} \cdot \frac{2a}{\sqrt{4a^2+y^2}} dy[/tex]

    Solving the integral, I get D which is correct.

    The problem is I don't understand what the solution booklet has mentioned. The solution goes like this: (see attachment 3)

    [tex]\int_{P}^Q \vec{E} \cdot \vec{dy}=\frac{1}{8}[\vec{E} \cdot \vec{dl} \text{ for square } TQRST][/tex]
    [tex]=\frac{1}{8} \frac{d[\pi a^4B_0t]}{dt}[/tex]
    [tex]=\frac{\pi}{8}B_0 a^2[/tex]

    I don't understand how they even got the first two steps. :confused:

    Any explanation on this would be helpful. Thanks!
     

    Attached Files:

    Last edited: Apr 13, 2013
  2. jcsd
  3. Apr 13, 2013 #2
    See the line integral from P to Q is one eight of the whole perimeter of the square...So the first line is written..It is similar like the electric flux concept which we use....In the second line...it should be a^2
     
  4. Apr 15, 2013 #3
    Yes, it should be a^2, sorry for the typo but I am not yet able to understand why the method works. :confused:
     
  5. Apr 15, 2013 #4
    See, if you have solved the sum of electric flux( i.e flux through one face of a cube containing a charge Q inside it.=Q/6e0) you can understand.The similar follows here...Instead of Surface integral here is the line integral..
     
  6. Apr 16, 2013 #5

    ehild

    User Avatar
    Homework Helper
    Gold Member

    Solve it by using Faraday's Low of Induction

    http://hyperphysics.phy-astr.gsu.edu/hbase/electric/maxeq2.html#c3.

    The electric field lines are circles around the cylinder. The line integral for a whole circle is equal to the negative of the derivative of magnetic flux inside. It does not depend on the actual path. You can use symmetry to calculate the integral for the given path.

    ehild
     
    Last edited: Apr 16, 2013
  7. Apr 16, 2013 #6
    I did use the integral form to get the magnitude of electric field.

    I am not sure if I get it but what about the case when the square shown in attachment 3 lies inside the circle ##x^2+y^2=a^2##? Would the same method still apply?

    Thanks!
     
  8. Apr 16, 2013 #7

    ehild

    User Avatar
    Homework Helper
    Gold Member

    The enclosed flux counts.

    ehild
     
  9. Apr 18, 2013 #8
    For instance if I inscribe a square of side a/√2 in the given circular region, the line integral for that square would be ##\frac{d\phi}{dt}## where ##\phi=(B_0t)(a^2/2)##. Is this correct?

    Thanks!
     
  10. Apr 18, 2013 #9

    ehild

    User Avatar
    Homework Helper
    Gold Member

    Yes.
     
  11. Apr 18, 2013 #10
    Thanks a lot ehild! :smile:
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted