1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Vector components in Polar Coordinate

  1. Jan 17, 2009 #1

    In a non-uniform circular motion if I have two components of a vector in cartesian coordinates then how to find the tangential and radial components of a vector. For example ;

    I have Vx and Vy as horizontal and vertical components of a vector V respectively. Vx and Vy can lie in all for quadrants.

    First I convert this into polar form as

    |V|=sqrt(Vx^2 + Vy^2)

    Tangent (angle)=(Vy/Vx)

    From this conversion from cartesian to polar coordinates that I have found out now, how can I find the Tangential and radial components of the Vector V in polar coordinates or saying in other way that if I have two components of a vector in cartesian coordinates then from this information how can I find the two components of that vector in polar coordinates.

    Immediate help is needed SOS!
  2. jcsd
  3. Jan 18, 2009 #2


    User Avatar
    Science Advisor
    Homework Helper

    Welcome to PF changazi.

    I don't really think I understand your question, didn't you just write down the polar coordinates of V? The only thing you need to take care with is the angle (you can take the arctangent, but you might have to add/subtract something to make sure it lies in the right quadrant -- you can easily see how to do this if you draw a picture of the vector).
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: Vector components in Polar Coordinate