Vector curl problem and potential

Click For Summary
SUMMARY

The vector field F = (2xyz + 1, x^2 z, x^2 y) is irrotational, confirmed by calculating its curl, which equals zero. The associated potential function φ can be derived by integrating the components of F. Specifically, φ(x,y,z) = x^2yz + x + C(y,z), where C(y,z) is a constant with respect to y and z. This method emphasizes the importance of carefully handling constants of integration when deriving potential functions in vector calculus.

PREREQUISITES
  • Understanding of vector fields and their properties
  • Knowledge of curl and irrotational fields in vector calculus
  • Ability to perform multivariable integration
  • Familiarity with potential functions and their physical interpretations
NEXT STEPS
  • Study the properties of irrotational vector fields in depth
  • Learn about the mathematical techniques for calculating curl in three dimensions
  • Explore multivariable integration techniques, focusing on integration with respect to multiple variables
  • Investigate the relationship between potential energy and force in physics
USEFUL FOR

Students and professionals in mathematics, physics, and engineering, particularly those focusing on vector calculus and its applications in potential theory.

navm1
Messages
44
Reaction score
0

Homework Statement


Prove that the vector field F = (2xyz + 1, x^2 z, x^2 y) is irrotational. Find the potential φ associated with F (i.e. find the function φ for which ∇φ = F).

Homework Equations

The Attempt at a Solution



I figure for the first part I just calculate the curl, but for the second part, does this mean potential energy? perhaps it is irrelevant to me working out this question but if potential energy is mgx then taking the derivative with respect to x would leave us with a force mg. I am not sure how I would approach the second part. Thanks
 
Physics news on Phys.org
Am I to just integrate each component by its respective variable? I am not sure how to calculate ∇φ for a vector function

edit: just by looking at the components I got x^2yz+x because the rest have x^2 still and there would only be a +1 if there had been a x there. not sure if there was a mathematical way to calculate this too
 
Last edited:
navm1 said:

Homework Statement


Prove that the vector field F = (2xyz + 1, x^2 z, x^2 y) is irrotational. Find the potential φ associated with F (i.e. find the function φ for which ∇φ = F).

Homework Equations

The Attempt at a Solution



I figure for the first part I just calculate the curl, but for the second part, does this mean potential energy? perhaps it is irrelevant to me working out this question but if potential energy is mgx then taking the derivative with respect to x would leave us with a force mg. I am not sure how I would approach the second part. Thanks
No. Not mgx.

mgx is a potential function for gravitational force near Earth's surface, provided that x is vertical distance.
navm1 said:
Am I to just integrate each component by its respective variable? I'm not sure how to calculate ∇φ for a vector function

edit: just by looking at the components I got x^2yz+x because the rest have x^2 still and there would only be a +1 if there had been a x there. not sure if there was a mathematical way to calculate this too
Yes. Generally you integrate, but you need to be careful and/or clever regarding constants of integration.

This you can get pretty well by inspection.

Look at integration. Consider Fx first.
##\displaystyle\ \frac{\partial }{\partial x}\varphi(x,y,z)=F_x(x,y,z) \ ##

So that ##\displaystyle\ \varphi(x,y,z)=\int F_x(x,y,z)\,dx \ ## , treating y and z as constants.

Thus for this potential we get, ##\displaystyle\ \varphi(x,y,z)=\int (2xyz + 1)\,dx \ = x^2yz + x +C(y,z)##.

Notice that the constant of integration can be a function of y and z. However, if you compare the partial derivatives (w.r.t y and z) of this potential with Fy and Fz respectively, C(y,z) must be constant w.r.t. both y and z, since its partials w.r.t. each is zero.

In contrast to this, let us suppose that you chose to find the potential function by integrating w.r.t. y first. (or z if you wanted to: The choice is yours.)

##\displaystyle\ \varphi(x,y,z)=\int (x^2z)\,dy \ = x^2zy +C(x,z)##

Taking the partial w.r.t. z give Fz just fine so the constant of integration does not depend on z. So write C(x,z) as C(x).

However, ##\displaystyle\ \frac{\partial }{\partial x} (x^2zy +C(x))=2xyz+C'(x)## must be ##\ 2xyz + 1\ ## so ##\ C'(x) = 1\ ## thus ##\ C(x) = x\ + constant\,.##

Plug that back into the potential function.
 
Thanks. That has definitely helped me build a little more intuition for what I was doing
 
Also another quick related question, if I'm asked for the directional derivative in the positive x direction and calculated del-phi of a scalar function to be some (xi+yj) do I just plug numbers into the x component?

edit: I worked out that if I think of that as a vector with components (1,0) then it makes sense
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K