Verify Stoke's theorem for this surface

  • Thread starter s3a
  • Start date
  • #1
s3a
811
8

Homework Statement


The problem and its solution are attached in TheProblemAndSolution.jpg.

Homework Equations


Stoke's theorem: ∮_C F ⋅ dr = ∮_C (FT^) dS = ∫∫_S (curl F) ⋅ n^ dS

The Attempt at a Solution


In the solution attached in the TheProblemAndSolution.jpg file, I don't understand what's going on with the integral that has |n^k^| on a denominator.

Could someone please add the steps that are skipped by the solution?
 

Attachments

  • TheProblemAndSolution.jpg
    TheProblemAndSolution.jpg
    19 KB · Views: 427

Answers and Replies

  • #2
STEMucator
Homework Helper
2,076
140
An easier way would be to say:

$$\oint_C \vec F \cdot d \vec r = \iint_S \text{curl}(\vec F) \cdot d \vec S = \iint_D \left[(z^2 + x) \hat i - (z+3) \hat k \right] \cdot (\vec r_x \times \vec r_y) \space dA = \iint_D \left[(4 + x) \hat i - 5 \hat k \right] \cdot (\vec r_x \times \vec r_y) \space dA$$

Where ##\vec r(x,y) = x \hat i + y \hat j + 2 \hat k##.

A simple switch to polar co-ordinates afterwards would clean that up nicely.
 

Suggested for: Verify Stoke's theorem for this surface

Replies
7
Views
990
Replies
14
Views
280
Replies
3
Views
81
  • Last Post
Replies
1
Views
28
Replies
7
Views
365
Replies
5
Views
428
Replies
4
Views
381
Replies
2
Views
561
Replies
4
Views
712
Top