Verify that d/dx(ln x)-1/2 using theorem 7

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
SUMMARY

The discussion verifies that the derivative of the natural logarithm function, $\dfrac{d}{dx}\ln(x)$, equals $\dfrac{1}{x}$ by applying Theorem 7. Theorem 7 states that for a one-to-one differentiable function with an inverse, the derivative of the inverse function can be expressed as $\dfrac{dy}{dx} = \dfrac{1}{\dfrac{dx}{dy}}$. The participants clarify the relationship between the function and its inverse, ultimately confirming that $\dfrac{dy}{dx} = \dfrac{1}{x}$ when $y = \ln(x)$.

PREREQUISITES
  • Understanding of basic calculus concepts, specifically derivatives.
  • Familiarity with inverse functions and their properties.
  • Knowledge of Theorem 7 regarding differentiable functions and their inverses.
  • Ability to manipulate exponential and logarithmic functions.
NEXT STEPS
  • Study the application of Theorem 7 in different contexts of calculus.
  • Learn about the properties of logarithmic and exponential functions.
  • Explore advanced differentiation techniques, including implicit differentiation.
  • Investigate the concept of integration by parts as mentioned in the discussion.
USEFUL FOR

Students and educators in calculus, particularly those focusing on derivatives and inverse functions, as well as anyone preparing for advanced mathematics topics.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Verify that $\dfrac{d}{dx}\ln(x)=\dfrac{1}{x}$ <br>
by applying Theorem 7<br>
Theorem 7 states that: If f is a one-to-one differentiable function with inverse $f^{-1}$ and $f'(f^{-1}(a))$ then the inverse function is differtiable at a and <br>
$$\dfrac{dy}{dx}=\dfrac{1}{\dfrac{dx}{dy}}$$<br>
then<br>
$$f^{-1}(y)=\dfrac{dy}{dx}=1$$<br>
therefore <br>
$$\dfrac{dy}{dx}<br>
=\dfrac{1}{f'(x)}<br>
=\dfrac{1}{\dfrac{dx}{dy}}$$<br>
so<br>
$$\displaystyle f^{-1}{\dfrac{1}{x}}<br>
=\dfrac{1}{f'\left(f^{-1}<br>
\left(\dfrac{1}{x}\right)\right)}<br>
=\dfrac{1}{f'(x)}=\dfrac{1}{x}$$<br>
<br>
ok I kinda got lost on this review question
 
Last edited:
Physics news on Phys.org
To be honest, I became a bit lost also.A stab at what I think you’re looking for ...

$y = \ln{x} \implies x = e^y$

$\dfrac{d}{dy}\left[x=e^y \right] \implies \dfrac{dx}{dy} = e^y \implies \dfrac{1}{\frac{dx}{dy}} = \dfrac{1}{e^y} = \dfrac{1}{x} = \dfrac{dy}{dx}$

... if not, just ignore.
 
probably... I didn't get the theorem to well

not sure why the <br> shows up it didn't earlierwell our next stuff is Integration by Parts which I have some a little

Mahalo for the help...
 
karush said:
Verify that $\dfrac{d}{dx}\ln(x)=\dfrac{1}{x}$ <br>
by applying Theorem 7<br>
Theorem 7 states that: If f is a one-to-one differentiable function with inverse $f^{-1}$ and $f'(f^{-1}(a))$ then the inverse function is differtiable at a and <br>
$$\dfrac{dy}{dx}=\dfrac{1}{\dfrac{dx}{dy}}$$<br>
then<br>
$$f^{-1}(y)=\dfrac{dy}{dx}=1$$<br>
This simply makes no sense! The inverse function of a given function has nothing to do with the derivative! In addition "$f^{-1}(y)$" says that you are going to give a function depending on y but $\dfrac{dy}{dx}$ is a function of x, not y.

I think what you meant to say was that "if $y= f(x)= ln(x)$ then $x= f^{-1}(y)= e^y$". NOW you can say that $\frac{dx}{dy}= e^y$ so that $\frac{dy}{dx}= \frac{1}{\frac{dx}{dy}}= \frac{1}{e^y}= \frac{1}{e^{ln(x)}}= \frac{1}{x}$ because, of course, $e^{ln(x)}= x$.

therefore <br>
$$\dfrac{dy}{dx}<br>
=\dfrac{1}{f'(x)}<br>
=\dfrac{1}{\dfrac{dx}{dy}}$$<br>
so<br>
$$\displaystyle f^{-1}{\dfrac{1}{x}}<br>
=\dfrac{1}{f'\left(f^{-1}<br>
\left(\dfrac{1}{x}\right)\right)}<br>
=\dfrac{1}{f'(x)}=\dfrac{1}{x}$$<br>
<br>
ok I kinda got lost on this review question
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K