Undergrad Verifying Equality: \mathcal{Im}[A+B+Te^{2ip}]=0

Click For Summary
SUMMARY

The discussion centers on the mathematical expression ##\mathcal{Im}[A+B+Te^{2ip}]=0##, where ##R=Ae^{ip}+Be^{-ip}## must remain real. The user seeks to verify their derivation and whether the equality holds under specific conditions. Key points include the dependence of ##T## on ##A## and ##B##, and the necessity of ensuring that ##R## is real while manipulating the imaginary parts of complex expressions. The conclusion is that while the equality can hold under certain conditions, care must be taken with the assumptions regarding the values of ##A##, ##B##, and the phase ##p##.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with Euler's formula and exponential functions
  • Knowledge of imaginary and real parts of complex expressions
  • Basic principles of phase in complex analysis
NEXT STEPS
  • Explore the properties of complex functions and their imaginary components
  • Study the implications of phase shifts in complex numbers
  • Investigate conditions for real-valued expressions in complex analysis
  • Learn about the role of sine and cosine functions in complex exponentials
USEFUL FOR

Mathematicians, physicists, and students engaged in complex analysis or quantum mechanics, particularly those working with wave functions and phase relationships in complex systems.

AtoZ
Messages
10
Reaction score
0
I have an expression
##\mathcal{Im}[RT^*e^{-2ip}]=|T|^2\sin p ##, where ##R=Ae^{ip}+Be^{-ip} ## and ##p ## is a real number.

This ultimately should lead to ##\mathcal{Im}[A+B+Te^{2ip}]=0 ## upto a sign (perhaps if I didn't do a mistake).
There is a condition on ##R ## that it is real, i.e., ##R^*=R ##, but ##A ## and ##B ## are not in general real. Further, ##T## depends on ##A## and ##B ## in such a way that if ##A=0 ##, ##B=0 ## then ##T=0 ##, and ##A\neq B## so the (desired) equality holds. Here is what I do to achieve the desired result:

##\mathcal{Im}[(Ae^{ip}+Be^{-ip})T^*e^{-2ip}-|T|^2e^{ip}]=0 ##

Then I take common ##T^*e^{-ip} ## from the above expression and it leads me to
##\mathcal{Im}[\{(Ae^{2ip}+B)e^{-ip}-Te^{2ip}\}]=0 ##

This leads to ##\mathcal{Im}[Ae^{ip}+Be^{-ip}-Te^{2ip}]=0 ##

This I rewrite as (since ##R=Ae^{ip}+Be^{-ip} ## is real)

##\mathcal{Im}[A+B-Te^{2ip}]=0 ##, This is the result which is correct upto a sign.

I want to know whether I made a mistake? or there is a mistake in what I want to achieve (regarding the plus sign in front of $T$ expression in the desired versus achieved)? Thanks.
 
Last edited by a moderator:
Mathematics news on Phys.org
AtoZ said:
##\mathcal{Im}[(Ae^{ip}+Be^{-ip})T^*e^{-2ip}-|T|^2e^{ip}]=0 ##

Then I take common ##T^*e^{-ip} ## from the above expression and it leads me to
##\mathcal{Im}[\{(Ae^{2ip}+B)e^{-ip}-Te^{2ip}\}]=0 ##
Something went wrong with the exponentials here. In addition you can't just divide by a complex number, the imaginary part might change. As a simple example, ##Im(1)=0## but ##Im(\frac{1}{i}) \neq 0##.
This leads to ##\mathcal{Im}[Ae^{ip}+Be^{-ip}-Te^{2ip}]=0 ##

This I rewrite as (since ##R=Ae^{ip}+Be^{-ip} ## is real)

##\mathcal{Im}[A+B-Te^{2ip}]=0 ##
That doesn't look like a correct mathematical operation. If ##R=Ae^{ip}+Be^{-ip} ## is real and you take the imaginary part of your expression then you should just remove it from the sum, without leaving in A and B.
 
  • Like
Likes AtoZ
mfb said:
Something went wrong with the exponentials here. In addition you can't just divide by a complex number, the imaginary part might change. As a simple example, ##Im(1)=0## but ##Im(\frac{1}{i}) \neq 0##.
That doesn't look like a correct mathematical operation. If ##R=Ae^{ip}+Be^{-ip} ## is real and you take the imaginary part of your expression then you should just remove it from the sum, without leaving in A and B.

@mfb Thanks. I will recheck the first part of your answer. Regarding the second part I want to clarify that even if ##R## is real, but ##A## and ##B## need not be real, so I kept ##A## and ##B## inside the ##\mathcal{Im}[..]## is it not allowed then?
 
AtoZ said:
Regarding the second part I want to clarify that even if ##R## is real, but ##A## and ##B## need not be real, so I kept ##A## and ##B## inside the ##\mathcal{Im}[..]## is it not allowed then?
You can't just randomly decide to "keep something in" in some modified version. As an example, consider ##A=B=i##, ##p=\frac \pi 2##. Then ##R=Ae^{ip}+Be^{-ip} = i^2-i^2 = 0## but ##\mathcal{Im}(A+B)=2##.
 
  • Like
Likes AtoZ
mfb said:
You can't just randomly decide to "keep something in" in some modified version. As an example, consider ##A=B=i##, ##p=\frac \pi 2##. Then ##R=Ae^{ip}+Be^{-ip} = i^2-i^2 = 0## but ##\mathcal{Im}(A+B)=2##.
@mfb Thank you. In a physics perspective, if ##p## is a phase, can we choose an overall phase so that ##R## becomes real? Consequently yielding the required equality?
 
I thought p was some unknown constant. Since when can we choose it? For given A,B there will always be value of p where R is real. For p=0 and p=pi you get opposite imaginary parts and the imaginary part is continuous in p, therefore there must be a zero crossing.
 
  • Like
Likes AtoZ
mfb said:
I thought p was some unknown constant. Since when can we choose it? For given A,B there will always be value of p where R is real. For p=0 and p=pi you get opposite imaginary parts and the imaginary part is continuous in p, therefore there must be a zero crossing.
Okay let me reproduce here, which I got.

Since ##Im[z]=\frac{z-\bar{z}}{2i}## (definition), our ##z## is defined as ##z=RT^*e^{-2ip}## since ##R## is real, so we can write
##\frac{R(T^*e^{-2ip}-Te^{2ip})}{2i}-|T|^2sinp=0##
since ##T## is in general complex, we can replace ##T=re^{i\phi}##, with arbitrary ##\phi## and that ##|T|=r##
This leads to
##-\frac{R|T|\left[e^{i(\phi+2p)}-e^{-i(\phi+2p)}\right]}{2i}-|T|^2sinp=0## becase ##r=|T|##,
##Rsin(\phi+2p)+|T|sinp=0##
which can we rewrite as?
##Im[Re^{i(\phi+2p)}+Te^{ip}]=0##, now here the assumption of overall phase could matter that "we choose an overall phase so that $R$ is real, and that leads to the expression which is desired i.e., ##Im[A+B+Te^{2ip}]=0##.

One more thing: We can make ##R## real only in the following case
if we make the replacement ##A=c_1e^{-ip}## and ##B=c_2e^{ip}## then ##R## is real. which essentially means that ##R=c_1+c_2##, but we can rename ##c_1## and ##c_2## as ##A## and ##B## later to match the result with the required equality.
So choosing and overall phase so that ##R## is real, makes sense with this argument? My intuition regarding these phase and stuff is bad, sorry.

I suppose I am quite close but still not exactly there.
 
Last edited:
  • #10
AtoZ said:
which can we rewrite as?
How?

If R is real, then ##Im[R+Te^{ip}]=Im[Te^{ip}]##.
 
  • Like
Likes AtoZ
  • #11
mfb said:
How?

If R is real, then ##Im[R+Te^{ip}]=Im[Te^{ip}]##.
because there is a ##sin(\phi+2p)## being multiplied by ##R##. oh wait. am I correct there? yes you are correct then there should be ##Re^{i(\phi+2p)}## not just ##R##
 
  • #12
That is not an explanation how you got the following expression. Can you break it down step by step?
 
  • Like
Likes AtoZ
  • #13
mfb said:
That is not an explanation how you got the following expression. Can you break it down step by step?
Okay, I have modified my above answer with more steps. Can you please see whether I made a mistake?
 
  • #14
mfb said:
That is not an explanation how you got the following expression. Can you break it down step by step?
Essentially now the question boils down to whether
##Im[Ae^{i(\phi+2p)}+Be^{i(\phi+2p)}+Te^{ip}]=0## is equal to ##Im[A+B+Te^{2ip}]=0## or not, if equal, then what should be the condition on ##\phi## or ##p## I think.
 
  • #15
They are not equal in general, see my example a few posts ago.

They are identical if ϕ+2p is a multiple of 2pi (trivial). They can be identical for other values, that depends on A and B.
AtoZ said:
Okay, I have modified my above answer with more steps.
I don't see more steps at the point I asked about.

Where does all that come from? Who gave you the final expression you want to get? I feel there is some context missing, because in the way you describe it the answer you want to get is simply wrong.
 

Similar threads

Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 107 ·
4
Replies
107
Views
19K
Replies
9
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
9K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K