Verifying properties of Van der Waals Gas

AI Thread Summary
The discussion focuses on verifying properties of the Van der Waals gas, specifically transitioning from the Van der Waals equation to the Helmholtz free energy expression. The user successfully rewrites the Van der Waals equation and applies a Taylor approximation, leading to an expression for the Helmholtz free energy in terms of temperature and volume. The challenge arises when attempting to express the Helmholtz free energy in terms of temperature and pressure, with suggestions provided for substituting volume in terms of pressure. Ultimately, the user confirms that the suggested substitution works, resolving their issue.
baseballfan_ny
Messages
92
Reaction score
23
Homework Statement
(a) Show that the entropy of the VDW gas is ##\sigma = N \{ \ln \left [ \frac { n_Q(V - Nb) } {N} \right] + \frac 5 2 \}##

(b) Show that the energy of the VDW gas is ##U = \frac 3 2 N \tau - \frac {N^2 a} {V} ##

(c) Show that ## H(\tau, V) = \frac 5 2 N \tau + \frac {N^2 b \tau} {V} - \frac {2N^2 a} {V} ##
and ## H(\tau, P) = \frac 5 2 N \tau + Nbp - \frac {2Nap} {\tau} ## where ## H = U + pV##

All results arc given to first order in the van der Waals correction terms a, b.
Relevant Equations
Van der waals equation: ## \left( p + \frac {N^2 a} {V^2} \right) \left( V - Nb \right) = N \tau ##
So a and b were pretty straightforward. Got stuck on part c.

The question says they approximated Van der Waals in first order in a and b. So I started with that by rewriting Van der Waals eqn as ## p = \frac { N \tau } { V - Nb } - \frac {N^2a} {V^2} ## and I then Taylor approximated ## \frac {1} {V - Nb} \approx \frac 1 V + \frac {N} {V^2} b ##.

Then p becomes
$$ p = N\tau \left( \frac 1 V + \frac {N} {V^2} b \right) - \frac {N^2a} {V^2} $$

and subbing this into ## H = U + pV## gave me ## H(\tau, V) = \frac 5 2 N \tau + \frac {N^2 b \tau} {V} - \frac {2N^2 a} {V} ##.

Now I'm stuck on getting ## H(\tau, P) ##. I'm pretty sure all I need to do is rewrite V in terms of P, but I'm not able to do that. Just trying to write V from the 1st order approximation I got above of Van der Waals equation gives:
$$ p = N\tau \left( \frac 1 V + \frac {N} {V^2} b \right) - \frac {N^2a} {V^2} $$
$$ \frac {p} {N \tau} = \frac 1 V + \frac {Nb} {V^2} - \frac {Na} {V^2 \tau} $$

And that's still first order in a and b but I'm not sure how to solve it. Is there some approximation I'm missing?
 
Physics news on Phys.org
Suggestion: ## PV=N \tau ## to zeroth order. Substitute ## V=N \tau/P ## in the denominator of the ## a N^2/V^2 ## term, (Edit: and/or the denominator of the ## H(\tau, V ) ## terms=it's very simple), and you then can get ## V ## in terms of ## P ## to first order in ## a ## and ## b ##.
 
Last edited:
  • Like
Likes BvU and baseballfan_ny
Charles Link said:
Suggestion: ## PV=N \tau ## to zeroth order. Substitute ## V=N \tau/P ## in the denominator of the ## a N^2/V^2 ## term, (Edit: and/or the denominator of the ## H(\tau, V ) ## terms=it's very simple), and you then can get ## V ## in terms of ## P ## to first order in ## a ## and ## b ##.
Works! Thank you!
 
  • Like
Likes Charles Link
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top