Verifying properties of Van der Waals Gas

Click For Summary
The discussion focuses on verifying properties of the Van der Waals gas, specifically transitioning from the Van der Waals equation to the Helmholtz free energy expression. The user successfully rewrites the Van der Waals equation and applies a Taylor approximation, leading to an expression for the Helmholtz free energy in terms of temperature and volume. The challenge arises when attempting to express the Helmholtz free energy in terms of temperature and pressure, with suggestions provided for substituting volume in terms of pressure. Ultimately, the user confirms that the suggested substitution works, resolving their issue.
baseballfan_ny
Messages
92
Reaction score
23
Homework Statement
(a) Show that the entropy of the VDW gas is ##\sigma = N \{ \ln \left [ \frac { n_Q(V - Nb) } {N} \right] + \frac 5 2 \}##

(b) Show that the energy of the VDW gas is ##U = \frac 3 2 N \tau - \frac {N^2 a} {V} ##

(c) Show that ## H(\tau, V) = \frac 5 2 N \tau + \frac {N^2 b \tau} {V} - \frac {2N^2 a} {V} ##
and ## H(\tau, P) = \frac 5 2 N \tau + Nbp - \frac {2Nap} {\tau} ## where ## H = U + pV##

All results arc given to first order in the van der Waals correction terms a, b.
Relevant Equations
Van der waals equation: ## \left( p + \frac {N^2 a} {V^2} \right) \left( V - Nb \right) = N \tau ##
So a and b were pretty straightforward. Got stuck on part c.

The question says they approximated Van der Waals in first order in a and b. So I started with that by rewriting Van der Waals eqn as ## p = \frac { N \tau } { V - Nb } - \frac {N^2a} {V^2} ## and I then Taylor approximated ## \frac {1} {V - Nb} \approx \frac 1 V + \frac {N} {V^2} b ##.

Then p becomes
$$ p = N\tau \left( \frac 1 V + \frac {N} {V^2} b \right) - \frac {N^2a} {V^2} $$

and subbing this into ## H = U + pV## gave me ## H(\tau, V) = \frac 5 2 N \tau + \frac {N^2 b \tau} {V} - \frac {2N^2 a} {V} ##.

Now I'm stuck on getting ## H(\tau, P) ##. I'm pretty sure all I need to do is rewrite V in terms of P, but I'm not able to do that. Just trying to write V from the 1st order approximation I got above of Van der Waals equation gives:
$$ p = N\tau \left( \frac 1 V + \frac {N} {V^2} b \right) - \frac {N^2a} {V^2} $$
$$ \frac {p} {N \tau} = \frac 1 V + \frac {Nb} {V^2} - \frac {Na} {V^2 \tau} $$

And that's still first order in a and b but I'm not sure how to solve it. Is there some approximation I'm missing?
 
Physics news on Phys.org
Suggestion: ## PV=N \tau ## to zeroth order. Substitute ## V=N \tau/P ## in the denominator of the ## a N^2/V^2 ## term, (Edit: and/or the denominator of the ## H(\tau, V ) ## terms=it's very simple), and you then can get ## V ## in terms of ## P ## to first order in ## a ## and ## b ##.
 
Last edited:
  • Like
Likes BvU and baseballfan_ny
Charles Link said:
Suggestion: ## PV=N \tau ## to zeroth order. Substitute ## V=N \tau/P ## in the denominator of the ## a N^2/V^2 ## term, (Edit: and/or the denominator of the ## H(\tau, V ) ## terms=it's very simple), and you then can get ## V ## in terms of ## P ## to first order in ## a ## and ## b ##.
Works! Thank you!
 
  • Like
Likes Charles Link
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?