Vertical circuit under a magnetic field

Click For Summary
SUMMARY

The discussion focuses on calculating the force required to maintain a constant velocity for a segment of a vertical circuit positioned beside a current-carrying wire. The magnetic field generated by the wire is described by the equation ## \vec B = \frac{\mu_0 I}{2\pi r} ##, and the induced electromotive force (EMF) in the circuit is derived using Faraday's law of induction. The participants confirm that the current in the circuit can be calculated by dividing the induced EMF by the total resistance, leading to the expression ## I_{circuit}=\frac{\epsilon}{2R+2\beta l} ##. The final force on the moving segment is determined through integration, resulting in ## F = \frac{\mu_0 i_c I_{wire}}{2\pi }ln(\frac{a+b}{a})\vec e_y ##.

PREREQUISITES
  • Understanding of electromagnetic theory, specifically Faraday's law of induction.
  • Familiarity with magnetic fields generated by current-carrying wires.
  • Knowledge of circuit analysis, including resistance and current calculations.
  • Ability to perform integration in the context of physics problems.
NEXT STEPS
  • Study the application of Faraday's law in various electromagnetic scenarios.
  • Learn about the relationship between induced EMF and circuit resistance in detail.
  • Explore the concept of magnetic forces on current-carrying conductors.
  • Investigate energy conservation principles in electromagnetic systems.
USEFUL FOR

Students and professionals in physics and electrical engineering, particularly those interested in electromagnetism and circuit analysis.

carllacan
Messages
272
Reaction score
3

Homework Statement


An undefinedly long circuit is set vertically besides a current wire. The circuit has a conducting straight wire (the line AB) that can slide over it. The segments AB and CD have both resistance R, and the rest of the circuit has a lineal resistance ##\beta##.

How much force do we need to apply to the segment AB so that it descends with constante velocity ##v_0##?
https://photos-1.dropbox.com/t/2/AABqrUoB2O4vc616FYj-7SjoKBE3HfVok5fdrE-mQjBsEA/12/28182931/png/1024x768/3/1422032400/0/2/Screenshot%20from%202015-01-23%2015%3A34%3A30.png/CJOTuA0gASACIAMoASgC/SZ8-4VjvN-JRevQHpIByWWJh9zKoEmwluexW0MgzuiQ

Homework Equations


Magnetic field of a straight wire ## \vec B = \frac{\mu_0 I}{2\pi r} ##
Faraday's law of induction ##\epsilon = - \frac{d\Phi}{dt}##

The Attempt at a Solution


The first things I've done is find the expression for the magnetic flux through the circuit. I'll call ##l## the distance between the points C and A. To do so I integrate the magnetic field created by the wire at a distance r from a to a+b, and then multiply it by the height of the closed circuit, which is l.
## \Phi = l\int _{a} ^{a+b} B_{wire}(R) dR = l\int \frac{\mu_0 I}{2\pi R} dR = \frac{\mu_0 I l}{2\pi} (ln|a+b| -ln|a|) =l \frac{\mu_0 I }{2\pi} ln|1+\frac{b}{a}|##
Now the EMF on the circuit is simply
## \epsilon = - v\frac{d\Phi}{dt} = -\frac{\mu_0 I }{2\pi} ln|1+\frac{b}{a}|##, where ##v## is the velocity at which l grows, or equivalently the falling velocity of the wire.

Next I need the current along the segment, and here is where I start running into problems, since I'm not sure of how to treat the EMF in a circuit. I know it is a voltage, but when I normally work with circuits voltage are defined between two points in a circuit. Between which two points should I put ##\epsilon##? Between any pair of points? Or should I divide ##\epsilon## by the total resistance of the circuit and take the result as a current through it? That is ##I_{circuit}=\frac{V}{R_T}= \frac{\epsilon}{2R+2\beta l} ##

Thank you for your time.
 
Last edited by a moderator:
Physics news on Phys.org
carllacan said:
Now the EMF on the circuit is simply
## \epsilon = - v\frac{d\Phi}{dt} = -\frac{\mu_0 I }{2\pi} ln|1+\frac{b}{a}|##, where ##v## is the velocity at which l grows, or equivalently the falling velocity of the wire.
Looks like you have the ##v## misplaced, but I think it's just a typo.

Or should I divide ##\epsilon## by the total resistance of the circuit and take the result as a current through it? That is ##I_{circuit}=\frac{V}{R_T}= \frac{\epsilon}{2R+2\beta l} ##
Yes. Divide the induced emf by the total circuit resistance.
 
Thanks. Now to find the magnetic force on the moving segment I would need to integrate ##F = \int _a ^{a+b}\vec I_c \times \vec B(r)dr = -I_c\int _a ^{a+b}\vec e_x \times \vec e_z B(r)dr =-I_c\int _a ^{a+b}\vec e_y\frac{\mu_0 I_{wire}}{2\pi r}dr = \frac{\mu_0 i_c I_{wire}}{2\pi }ln(\frac{a+b}{a})\vec e_y ## right?
 
Yes, that looks right. (I'm not quite sure on the orientation of your coordinate axes. Therefore, I'm not sure how to interpret the direction of your force. In your next to last expression there is a negative sign that seems to disappear in the last expression.) There's a quicker way to get F from energy considerations. The electrical power consumed in the circuit must match the mechanical power input by the applied force F.
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
746
  • · Replies 0 ·
Replies
0
Views
1K