Mrx
- 4
- 0
Thanks for your reply. The equation you got for X(x) is the same I tried to solve. Let's do it again:
\lambda^2+2VX'\lambda + (V^2-c^2)X''=0
has solution
X(x)=\exp\left(r_{\pm} x\right)
With r=\frac{V\lambda \pm c\sqrt{\lambda^2}}{V^2-c^2}
Now you can distinguish three cases:
\lambda purely real
Then
r=\frac{-V\lambda \pm c\lambda}{V^2-c^2}=\frac{-V\lambda \pm c\lambda}{(V+c)(V-c)}=\frac{-\lambda}{V \pm c}
So
X(x)=A\exp\left(\frac{-\lambda}{V+c}x\right)+B\exp\left(\frac{-\lambda}{V-c}x\right)
With boundary conditions: X(0)=X(L)=0 it follows that A + B = 0 and
X(L)=A\exp\left(\frac{-\lambda}{V+c}L\right)-A\exp\left(\frac{-\lambda}{V-c}L\right)=0\Leftrightarrow A=0
It doesn't matter which values lambda takes (\lambda>0,\lambda<0, \lambda=0). \lambda cannot be purely real.
\lambda purely imaginary
Say \lambda = b i Then r=\frac{-b V i \pm c b i}{V^2-c^2}.
And
X(x)=A\exp\left(\frac{-b V i + c b i}{V^2-c^2}x \right)+B\exp\left(\frac{-b V i - c b i}{V^2-c^2}x \right)
X(0)=0 gives: B=-A, so
X(x)=A\exp\left(\frac{-bVi}{V^2-c^2}x \right) \left(\exp\left(\frac{c b i}{V^2-c^2}x \right)-\exp\left(\frac{- c b i}{V^2-c^2}x \right)\right)
X(x)=2iA\exp\left(\frac{-bVi}{V^2-c^2}x \right) \left(\sin\left( \frac{bcx}{V^2-c^2}\right))\right)
X(L)=0 gives b=\frac{n\pi \left( V^2 -c^2 \right)}{cL}
so \lambda = \frac{n\pi \left( V^2 -c^2 \right)}{cL} i
In the end then:
u(x,t)= \sum_{n=1}^{\infty} a_n \sin\left(\frac{n \pi x}{L} \right)\exp\left(\frac{n\pi V x}{cL}i \right) \exp\left(\frac{n\pi (V^2-c^2) t}{cL}i \right)
Did you get this as a solution?
I haven't tried the third case yet.
\lambda^2+2VX'\lambda + (V^2-c^2)X''=0
has solution
X(x)=\exp\left(r_{\pm} x\right)
With r=\frac{V\lambda \pm c\sqrt{\lambda^2}}{V^2-c^2}
Now you can distinguish three cases:
- \lambda purely real
- \lambda purely imaginary
- \lambda = a + bi
\lambda purely real
Then
r=\frac{-V\lambda \pm c\lambda}{V^2-c^2}=\frac{-V\lambda \pm c\lambda}{(V+c)(V-c)}=\frac{-\lambda}{V \pm c}
So
X(x)=A\exp\left(\frac{-\lambda}{V+c}x\right)+B\exp\left(\frac{-\lambda}{V-c}x\right)
With boundary conditions: X(0)=X(L)=0 it follows that A + B = 0 and
X(L)=A\exp\left(\frac{-\lambda}{V+c}L\right)-A\exp\left(\frac{-\lambda}{V-c}L\right)=0\Leftrightarrow A=0
It doesn't matter which values lambda takes (\lambda>0,\lambda<0, \lambda=0). \lambda cannot be purely real.
\lambda purely imaginary
Say \lambda = b i Then r=\frac{-b V i \pm c b i}{V^2-c^2}.
And
X(x)=A\exp\left(\frac{-b V i + c b i}{V^2-c^2}x \right)+B\exp\left(\frac{-b V i - c b i}{V^2-c^2}x \right)
X(0)=0 gives: B=-A, so
X(x)=A\exp\left(\frac{-bVi}{V^2-c^2}x \right) \left(\exp\left(\frac{c b i}{V^2-c^2}x \right)-\exp\left(\frac{- c b i}{V^2-c^2}x \right)\right)
X(x)=2iA\exp\left(\frac{-bVi}{V^2-c^2}x \right) \left(\sin\left( \frac{bcx}{V^2-c^2}\right))\right)
X(L)=0 gives b=\frac{n\pi \left( V^2 -c^2 \right)}{cL}
so \lambda = \frac{n\pi \left( V^2 -c^2 \right)}{cL} i
In the end then:
u(x,t)= \sum_{n=1}^{\infty} a_n \sin\left(\frac{n \pi x}{L} \right)\exp\left(\frac{n\pi V x}{cL}i \right) \exp\left(\frac{n\pi (V^2-c^2) t}{cL}i \right)
Did you get this as a solution?
I haven't tried the third case yet.