Violation of conservation of momentum?

Click For Summary
SUMMARY

The discussion centers on the violation of conservation of momentum in a thought experiment involving two parallel wires carrying current. Participants analyze the timing of current flow and the resulting magnetic fields, concluding that the system does not violate conservation laws due to the presence of electromagnetic (EM) radiation. The proper timing involves separating the wires by 1.5 cm and ensuring that the magnetic field from one wire reaches the other as the current is activated. Ultimately, the momentum is carried by the EM waves produced during the current transitions, confirming that momentum conservation is upheld.

PREREQUISITES
  • Understanding of Ampère's force law
  • Familiarity with electromagnetic radiation principles
  • Knowledge of Maxwell's equations
  • Basic concepts of current flow and magnetic fields
NEXT STEPS
  • Research the implications of Ampère's force law in practical applications
  • Study the generation and properties of electromagnetic radiation
  • Explore the principles of radiation reaction drives
  • Examine the role of Maxwell's equations in momentum conservation
USEFUL FOR

Physicists, electrical engineers, and students studying electromagnetism and conservation laws will benefit from this discussion, particularly those interested in the dynamics of current-carrying conductors and electromagnetic interactions.

Danyon
Messages
83
Reaction score
1
According to amperes force law two parallel wires with current flowing in the same direction will experience a magnetic force attracting them together. consider two 1cm long wires parallel to each other, separated by a distance of 1cm. Pass a current through both of the wires for the time it takes for the magnetic field from each to reach half way between them, then turn the current off on the left wire. The magnetic field from the left wire from when it was still on will continue to propagate outwards towards the right wire and will pass the right wire, this will cause the right wire to attract to the left. At the same time, the magnetic field from the right wire will pass the left wire, however since the wire has no current there will be no force attracting it to the right wire. Then turn the current off on the right wire and wait till the magnetic fields dissipate. then start the process all over again very quickly. This should produce a small thrust in one direction. Is there anything wrong with this picture??
 
Physics news on Phys.org
Thread closed temporarily for Moderation...
 
Thread re-opened. There has to be an issue, but I'm not seeing it. In the simplest case, you are asking about why a caterpillar would not work with timing of the currents in the two wires. Hopefully somebody can point out the flaw for us. :smile:
 
there are infact problems with the timings that I gave in the example, but I'm quite sure there exists timing that will work
 
Danyon said:
I suspect there may be some problems with the timings that I gave in the example, but I'm quite sure there exists timing that will work
Well, I'm pretty sure it won't work, since it would violate fundamental physics. The simplified problem statement is to time the two currents so that the B field from the left wire reaches the right wire as the current is turned on there, generating a force which does not happen in the left wire.

Sorry that I'm not seeing the obvious problem right off the bat. Others will find it for us...
 
berkeman said:
Well, I'm pretty sure it won't work, since it would violate fundamental physics. The simplified problem statement is to time the two currents so that the B field from the left wire reaches the right wire as the current is turned on there, generating a force which does not happen in the left wire.

Sorry that I'm not seeing the obvious problem right off the bat. Others will find it for us...

The proper timings are the following. separate the wires by 1.5cm. Turn on both the wires until the magnetic field reaches 0.5cm away from the wires, then shut power off on the left wire, while keeping the right wire powered until the magnetic field from the left wire reaches it.
 
I know, your question is clear. Please just wait for some responses from our physicists. Thank you.
 
This is the same issue as in your other thread. This arrangement will produce EM radiation (waves). The waves will carry momentum and you will get an equal and opposite momentum on the wires. This is another example of a radiation reaction drive, not a reaction less drive.

It is not a violation of conservation of momentum, the momentum is in the EM waves. Also, again you will be better off just shining a laser backwards. The EM momentum will be more collimated.
 
  • Like
Likes   Reactions: vidit jain and vanhees71
Dale said:
This is the same issue as in your other thread. This arrangement will produce EM radiation (waves). The waves will carry momentum and you will get an equal and opposite momentum on the wires. This is another example of a radiation reaction drive, not a reaction less drive.
Okay, thanks. I've been wondering about this for a while. would there be any near field effects in this example?
 
  • #10
Danyon said:
Okay, thanks. I've been wondering about this for a while. would there be any near field effects in this example?
That depends on the frequency of your current switching. Near fields still conserve momentum, so that doesn't change the above comments.
 
  • #11
Dale said:
That depends on the frequency of your current switching. Near fields still conserve momentum, so that doesn't change the above comments.
That's a shame. Oh well
 
  • #12
Dale said:
That depends on the frequency of your current switching. Near fields still conserve momentum, so that doesn't change the above comments.
Which wire do you say is emitting radiation? Would it still be the case if the device was only used once?
 
  • #13
Okay, I think I finally figured out the flaw. Interesting thought experiment accually.

The simplified situation is a pulse in current from the left wire that generates a B field at the right wire just as there is a current pulsing in the right wire, generating a force. The part that I missed at first is that to generate a pulse, you need to have a positive and then a negative transition. Same goes for the current on the right wire. If you look at the overall set of transients, you get a net zero force from the transient B fields and the transient currents in the right wire. I was only thinking about the positive onset currents and B-fields, and not taking into account the decreasing B-field and currents. Whew.
 
  • #14
Danyon said:
Which wire do you say is emitting radiation?
Both. EM radiation is produced any time the current changes.

Danyon said:
Would it still be the case if the device was only used once?
The conservation of momentum is built into Maxwell's equations. You cannot get around it.
 
  • Like
Likes   Reactions: vanhees71
  • #15
Some energy will be consumed overcoming radiation resistance. When you add that to the mix, momentum increase and decrease balances.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 61 ·
3
Replies
61
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K