MHB Violet's Trigonometry Questions via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Trigonometry
Click For Summary
The discussion focuses on solving various trigonometry problems using the sine and cosine rules. It demonstrates the application of the sine rule to find angles in triangles, specifically calculating the sine of angle β and using the cosine rule to determine angles in right-angled and non-right-angled triangles. The calculations include determining the lengths of sides and angles, such as finding the angle θ in an isosceles triangle and the area of a triangle using two sides and the included angle. The thread emphasizes the relationships between sides and angles in triangles, showcasing the importance of these rules in solving geometric problems. Overall, it provides clear examples of how to apply trigonometric principles effectively.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 7231

1. By applying the sine rule we have

$\displaystyle \begin{align*} \frac{\sin{ \left( A \right) }}{a} &= \frac{\sin{ \left( B \right) } }{b} \\ \frac{\sin{ \left( \alpha \right) }}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{\frac{2}{3}}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{1}{15} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \sin{ \left( \beta \right) } &= \frac{8}{15} \end{align*}$2. The length of the diagonal must be 10 units (it's a 3, 4, 5 right angled triangle magnified by a factor of 2 - check with Pythagoras if you'd like), so that means that the lengths from the centre to the vertices must each be 5 units in length.

Knowing this, the right hand isosceles triangle has lengths 5, 5, 6 and the angle between the two 5 lengths is $\displaystyle \begin{align*} \theta \end{align*}$, thus we can apply the cosine rule.

$\displaystyle \begin{align*} \cos{ \left( C \right) } &= \frac{a^2 + b^2 - c^2}{2\,a\,b} \\ \cos{ \left( \theta \right) } &= \frac{5^2 + 5^2 - 6^2}{2 \cdot 5 \cdot 5} \\ \cos{ \left( \theta \right) } &= \frac{25 + 25 - 36}{50} \\ \cos{ \left( \theta \right) } &= \frac{14}{50} \\ \cos{ \left( \theta \right) } &= \frac{7}{25} \\ \theta &= \cos^{-1}{\left( \frac{7}{25} \right) } \\ \theta &\approx 74^{\circ} \end{align*}$3. In $\displaystyle \begin{align*} \triangle ACD \end{align*}$ we can let $\displaystyle \begin{align*} \angle ACD = \theta \end{align*}$, then we can say that $\displaystyle \begin{align*} AD = \textrm{Opp} = 30 \end{align*}$ and $\displaystyle \begin{align*} CD = \textrm{Adj} = 40 \end{align*}$, so

$\displaystyle \begin{align*} \tan{ \left( \theta \right) } &= \frac{\textrm{Opp}}{\textrm{Adj}} \\ \tan{ \left( \theta \right) } &= \frac{30}{40} \\ \tan{ \left( \theta \right) } &= \frac{3}{4} \\ \theta &= \tan^{-1}{ \left( \frac{3}{4} \right) } \end{align*}$
 

Attachments

  • week 3.jpg
    week 3.jpg
    18.5 KB · Views: 129
Mathematics news on Phys.org
View attachment 7232

4. We have two sides and the angle between them, so we need to use the Cosine Rule.

$\displaystyle \begin{align*} b^2 &= a^2 + c^2 - 2\,a\,c\cos{ \left( B \right) } \\ b^2 &= 6^2 + 8^2 - 2 \cdot 6 \cdot 8 \cdot \cos{ \left( 120^{\circ} \right) } \\ b^2 &= 36 + 64 - 96\cos{ \left( 120^{\circ} \right) } \\ b^2 &= 100 - 96\cos{ \left( 120^{\circ} \right) } \\ b &= \sqrt{100 - 96\cos{ \left( 120^{\circ} \right) }} \end{align*}$5. The largest angle is opposite the largest side. You have all three sides of the triangle and are trying to find an angle, so you need to use the Cosine Rule.

$\displaystyle \begin{align*} \cos{ \left( C \right) } &= \frac{a^2 + b^2 - c^2}{2\,a\,b} \\ \cos{ \left( C \right) } &= \frac{6^2 + 5^2 - 10^2}{2 \cdot 6 \cdot 5} \\ \cos{ \left( C \right) } &= \frac{36 + 25 - 100}{60} \\ \cos{ \left( C \right) } &= \frac{-39}{\phantom{-}60} \\ \cos{ \left( C \right) } &= -\frac{13}{20} \\ C &= \cos^{-1}{ \left( -\frac{13}{20} \right) } \\ C &\approx 130^{\circ} \end{align*}$6. Again, we have all three sides and are trying to find an angle, so we need to use the Cosine Rule:

$\displaystyle \begin{align*} \cos{ \left( B \right) } &= \frac{a^2 + c^2 - b^2}{2\,a\,c} \\ \cos{ \left( B \right) } &= \frac{3^2 + 2^2 - 4^2}{2 \cdot 3 \cdot 2} \\ \cos{ \left( B \right) } &= \frac{9 + 4 - 16}{12} \\ \cos{ \left( B \right) } &= \frac{-3}{\phantom{-}12} \\ \cos{ \left( B \right) } &= -\frac{1}{4} \end{align*}$
 

Attachments

  • week 3 part 2.JPG
    week 3 part 2.JPG
    17.1 KB · Views: 116
View attachment 7233

7. To find the area of a triangle, you can use two sides and the angle between them.

As the three angles in a triangle add to $\displaystyle \begin{align*} 180^{\circ} \end{align*}$, that means the unknown angle must be $\displaystyle \begin{align*} 180^{\circ} - 30^{\circ} - 50^{\circ} = 100^{\circ} \end{align*}$.

$\displaystyle \begin{align*} A &= \frac{1}{2} \,a\,b \sin{ \left( C \right) } \\ &= \frac{1}{2} \cdot 6.13\,\textrm{m} \cdot 4\,\textrm{m} \cdot \sin{ \left( 100^{\circ} \right) } \end{align*}$
 

Attachments

  • week 3 part 3.JPG
    week 3 part 3.JPG
    6.9 KB · Views: 104
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K