Violet's Trigonometry Questions via Facebook

  • Context: MHB 
  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Trigonometry
Click For Summary
SUMMARY

This discussion focuses on solving various trigonometry problems using the sine and cosine rules. Key calculations include determining angles and side lengths in triangles, such as finding the angle θ using the cosine rule with values like 5, 5, and 6, resulting in θ ≈ 74°. Additionally, the area of a triangle is calculated using the formula A = 1/2 * a * b * sin(C), with specific values provided. The discussion emphasizes the application of trigonometric identities and rules to solve real-world problems effectively.

PREREQUISITES
  • Understanding of the Sine Rule and Cosine Rule
  • Familiarity with trigonometric functions (sine, cosine, tangent)
  • Basic knowledge of triangle properties and types (e.g., right-angled, isosceles)
  • Ability to perform inverse trigonometric calculations
NEXT STEPS
  • Explore advanced applications of the Sine Rule in non-right triangles
  • Learn about the Law of Cosines in depth
  • Study the derivation and applications of the area formula for triangles
  • Investigate the relationship between trigonometric functions and the unit circle
USEFUL FOR

Students studying trigonometry, educators teaching geometry, and professionals in fields requiring geometric calculations, such as architecture and engineering.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 7231

1. By applying the sine rule we have

$\displaystyle \begin{align*} \frac{\sin{ \left( A \right) }}{a} &= \frac{\sin{ \left( B \right) } }{b} \\ \frac{\sin{ \left( \alpha \right) }}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{\frac{2}{3}}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{1}{15} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \sin{ \left( \beta \right) } &= \frac{8}{15} \end{align*}$2. The length of the diagonal must be 10 units (it's a 3, 4, 5 right angled triangle magnified by a factor of 2 - check with Pythagoras if you'd like), so that means that the lengths from the centre to the vertices must each be 5 units in length.

Knowing this, the right hand isosceles triangle has lengths 5, 5, 6 and the angle between the two 5 lengths is $\displaystyle \begin{align*} \theta \end{align*}$, thus we can apply the cosine rule.

$\displaystyle \begin{align*} \cos{ \left( C \right) } &= \frac{a^2 + b^2 - c^2}{2\,a\,b} \\ \cos{ \left( \theta \right) } &= \frac{5^2 + 5^2 - 6^2}{2 \cdot 5 \cdot 5} \\ \cos{ \left( \theta \right) } &= \frac{25 + 25 - 36}{50} \\ \cos{ \left( \theta \right) } &= \frac{14}{50} \\ \cos{ \left( \theta \right) } &= \frac{7}{25} \\ \theta &= \cos^{-1}{\left( \frac{7}{25} \right) } \\ \theta &\approx 74^{\circ} \end{align*}$3. In $\displaystyle \begin{align*} \triangle ACD \end{align*}$ we can let $\displaystyle \begin{align*} \angle ACD = \theta \end{align*}$, then we can say that $\displaystyle \begin{align*} AD = \textrm{Opp} = 30 \end{align*}$ and $\displaystyle \begin{align*} CD = \textrm{Adj} = 40 \end{align*}$, so

$\displaystyle \begin{align*} \tan{ \left( \theta \right) } &= \frac{\textrm{Opp}}{\textrm{Adj}} \\ \tan{ \left( \theta \right) } &= \frac{30}{40} \\ \tan{ \left( \theta \right) } &= \frac{3}{4} \\ \theta &= \tan^{-1}{ \left( \frac{3}{4} \right) } \end{align*}$
 

Attachments

  • week 3.jpg
    week 3.jpg
    18.5 KB · Views: 134
Mathematics news on Phys.org
View attachment 7232

4. We have two sides and the angle between them, so we need to use the Cosine Rule.

$\displaystyle \begin{align*} b^2 &= a^2 + c^2 - 2\,a\,c\cos{ \left( B \right) } \\ b^2 &= 6^2 + 8^2 - 2 \cdot 6 \cdot 8 \cdot \cos{ \left( 120^{\circ} \right) } \\ b^2 &= 36 + 64 - 96\cos{ \left( 120^{\circ} \right) } \\ b^2 &= 100 - 96\cos{ \left( 120^{\circ} \right) } \\ b &= \sqrt{100 - 96\cos{ \left( 120^{\circ} \right) }} \end{align*}$5. The largest angle is opposite the largest side. You have all three sides of the triangle and are trying to find an angle, so you need to use the Cosine Rule.

$\displaystyle \begin{align*} \cos{ \left( C \right) } &= \frac{a^2 + b^2 - c^2}{2\,a\,b} \\ \cos{ \left( C \right) } &= \frac{6^2 + 5^2 - 10^2}{2 \cdot 6 \cdot 5} \\ \cos{ \left( C \right) } &= \frac{36 + 25 - 100}{60} \\ \cos{ \left( C \right) } &= \frac{-39}{\phantom{-}60} \\ \cos{ \left( C \right) } &= -\frac{13}{20} \\ C &= \cos^{-1}{ \left( -\frac{13}{20} \right) } \\ C &\approx 130^{\circ} \end{align*}$6. Again, we have all three sides and are trying to find an angle, so we need to use the Cosine Rule:

$\displaystyle \begin{align*} \cos{ \left( B \right) } &= \frac{a^2 + c^2 - b^2}{2\,a\,c} \\ \cos{ \left( B \right) } &= \frac{3^2 + 2^2 - 4^2}{2 \cdot 3 \cdot 2} \\ \cos{ \left( B \right) } &= \frac{9 + 4 - 16}{12} \\ \cos{ \left( B \right) } &= \frac{-3}{\phantom{-}12} \\ \cos{ \left( B \right) } &= -\frac{1}{4} \end{align*}$
 

Attachments

  • week 3 part 2.JPG
    week 3 part 2.JPG
    17.1 KB · Views: 121
View attachment 7233

7. To find the area of a triangle, you can use two sides and the angle between them.

As the three angles in a triangle add to $\displaystyle \begin{align*} 180^{\circ} \end{align*}$, that means the unknown angle must be $\displaystyle \begin{align*} 180^{\circ} - 30^{\circ} - 50^{\circ} = 100^{\circ} \end{align*}$.

$\displaystyle \begin{align*} A &= \frac{1}{2} \,a\,b \sin{ \left( C \right) } \\ &= \frac{1}{2} \cdot 6.13\,\textrm{m} \cdot 4\,\textrm{m} \cdot \sin{ \left( 100^{\circ} \right) } \end{align*}$
 

Attachments

  • week 3 part 3.JPG
    week 3 part 3.JPG
    6.9 KB · Views: 106

Similar threads

  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
11K