MHB Violet's Trigonometry Questions via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Trigonometry
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 7231

1. By applying the sine rule we have

$\displaystyle \begin{align*} \frac{\sin{ \left( A \right) }}{a} &= \frac{\sin{ \left( B \right) } }{b} \\ \frac{\sin{ \left( \alpha \right) }}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{\frac{2}{3}}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{1}{15} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \sin{ \left( \beta \right) } &= \frac{8}{15} \end{align*}$2. The length of the diagonal must be 10 units (it's a 3, 4, 5 right angled triangle magnified by a factor of 2 - check with Pythagoras if you'd like), so that means that the lengths from the centre to the vertices must each be 5 units in length.

Knowing this, the right hand isosceles triangle has lengths 5, 5, 6 and the angle between the two 5 lengths is $\displaystyle \begin{align*} \theta \end{align*}$, thus we can apply the cosine rule.

$\displaystyle \begin{align*} \cos{ \left( C \right) } &= \frac{a^2 + b^2 - c^2}{2\,a\,b} \\ \cos{ \left( \theta \right) } &= \frac{5^2 + 5^2 - 6^2}{2 \cdot 5 \cdot 5} \\ \cos{ \left( \theta \right) } &= \frac{25 + 25 - 36}{50} \\ \cos{ \left( \theta \right) } &= \frac{14}{50} \\ \cos{ \left( \theta \right) } &= \frac{7}{25} \\ \theta &= \cos^{-1}{\left( \frac{7}{25} \right) } \\ \theta &\approx 74^{\circ} \end{align*}$3. In $\displaystyle \begin{align*} \triangle ACD \end{align*}$ we can let $\displaystyle \begin{align*} \angle ACD = \theta \end{align*}$, then we can say that $\displaystyle \begin{align*} AD = \textrm{Opp} = 30 \end{align*}$ and $\displaystyle \begin{align*} CD = \textrm{Adj} = 40 \end{align*}$, so

$\displaystyle \begin{align*} \tan{ \left( \theta \right) } &= \frac{\textrm{Opp}}{\textrm{Adj}} \\ \tan{ \left( \theta \right) } &= \frac{30}{40} \\ \tan{ \left( \theta \right) } &= \frac{3}{4} \\ \theta &= \tan^{-1}{ \left( \frac{3}{4} \right) } \end{align*}$
 

Attachments

  • week 3.jpg
    week 3.jpg
    18.5 KB · Views: 121
Mathematics news on Phys.org
View attachment 7232

4. We have two sides and the angle between them, so we need to use the Cosine Rule.

$\displaystyle \begin{align*} b^2 &= a^2 + c^2 - 2\,a\,c\cos{ \left( B \right) } \\ b^2 &= 6^2 + 8^2 - 2 \cdot 6 \cdot 8 \cdot \cos{ \left( 120^{\circ} \right) } \\ b^2 &= 36 + 64 - 96\cos{ \left( 120^{\circ} \right) } \\ b^2 &= 100 - 96\cos{ \left( 120^{\circ} \right) } \\ b &= \sqrt{100 - 96\cos{ \left( 120^{\circ} \right) }} \end{align*}$5. The largest angle is opposite the largest side. You have all three sides of the triangle and are trying to find an angle, so you need to use the Cosine Rule.

$\displaystyle \begin{align*} \cos{ \left( C \right) } &= \frac{a^2 + b^2 - c^2}{2\,a\,b} \\ \cos{ \left( C \right) } &= \frac{6^2 + 5^2 - 10^2}{2 \cdot 6 \cdot 5} \\ \cos{ \left( C \right) } &= \frac{36 + 25 - 100}{60} \\ \cos{ \left( C \right) } &= \frac{-39}{\phantom{-}60} \\ \cos{ \left( C \right) } &= -\frac{13}{20} \\ C &= \cos^{-1}{ \left( -\frac{13}{20} \right) } \\ C &\approx 130^{\circ} \end{align*}$6. Again, we have all three sides and are trying to find an angle, so we need to use the Cosine Rule:

$\displaystyle \begin{align*} \cos{ \left( B \right) } &= \frac{a^2 + c^2 - b^2}{2\,a\,c} \\ \cos{ \left( B \right) } &= \frac{3^2 + 2^2 - 4^2}{2 \cdot 3 \cdot 2} \\ \cos{ \left( B \right) } &= \frac{9 + 4 - 16}{12} \\ \cos{ \left( B \right) } &= \frac{-3}{\phantom{-}12} \\ \cos{ \left( B \right) } &= -\frac{1}{4} \end{align*}$
 

Attachments

  • week 3 part 2.JPG
    week 3 part 2.JPG
    17.1 KB · Views: 113
View attachment 7233

7. To find the area of a triangle, you can use two sides and the angle between them.

As the three angles in a triangle add to $\displaystyle \begin{align*} 180^{\circ} \end{align*}$, that means the unknown angle must be $\displaystyle \begin{align*} 180^{\circ} - 30^{\circ} - 50^{\circ} = 100^{\circ} \end{align*}$.

$\displaystyle \begin{align*} A &= \frac{1}{2} \,a\,b \sin{ \left( C \right) } \\ &= \frac{1}{2} \cdot 6.13\,\textrm{m} \cdot 4\,\textrm{m} \cdot \sin{ \left( 100^{\circ} \right) } \end{align*}$
 

Attachments

  • week 3 part 3.JPG
    week 3 part 3.JPG
    6.9 KB · Views: 95
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
11K
Replies
1
Views
5K
Replies
4
Views
11K
Replies
1
Views
11K
Replies
1
Views
1K
Replies
1
Views
10K
Back
Top