Viscosity by Falling Sphere Equations

  • Thread starter Thread starter xenoidmaster
  • Start date Start date
  • Tags Tags
    Viscosity
Click For Summary
SUMMARY

The discussion centers on an experiment measuring the viscosity of water using the falling sphere method, employing spheres of diameters 2.5 mm, 5 mm, 10 mm, 15 mm, and 20 mm. The experiment aimed to validate Stokes' law, which suggests that the diameter of the sphere should not affect the viscosity of the liquid. However, the calculated viscosity was approximately 0.84 Pas, significantly higher than the expected 0.001 Pas for water. Participants questioned whether the diameter influences viscosity or merely affects terminal velocity, emphasizing the importance of laminar flow conditions for Stokes' law to apply.

PREREQUISITES
  • Understanding of Stokes' law and its application in fluid dynamics
  • Knowledge of viscosity measurement techniques, specifically the falling sphere method
  • Familiarity with high-speed camera usage for motion analysis
  • Basic principles of laminar flow and Reynolds number calculations
NEXT STEPS
  • Research the implications of Reynolds number on the validity of Stokes' law
  • Explore advanced viscosity measurement techniques beyond the falling sphere method
  • Investigate factors affecting terminal velocity in fluid dynamics
  • Learn about corrections for non-ideal conditions in viscosity calculations
USEFUL FOR

Students and researchers in fluid dynamics, experimental physicists, and anyone involved in viscosity measurement and analysis using the falling sphere method.

xenoidmaster
Messages
2
Reaction score
0
Homework Statement
I have recently conducted an experiment to measure the viscosity of some liquids using the falling sphere method and a high-speed camera. I used different diameters of sphere starting from 2.5, 5, 10, 15 and 20 mm. What I want to prove using stokes law equation is that diameter of sphere doesn't affect viscosity of a liquid and it will stay the same. I guess it's okay if it has a little bit different viscosity for each diameter, however when I calculate using the stokes law formula, the difference is so big and when I compared it to the real viscosity of the liquid it's also so different. The liquid is water, which was supposed to have 0.001 Pas, but my calculated value is around 0.84 Pas. I need help, does diameter affect viscosity? if I'm not wrong it only affects the terminal velocity. How please??
Relevant Equations
η = 2gr^2(d'– d)/9v
where:
v is the particles' terminal velocity velocity (m/s),
r is the radius of the sphere,
g is the gravitational acceleration,
d' is the density of the falling sphere,
d is the density of the liquid,
and η is the viscosity.
I have recently conducted an experiment to measure the viscosity of some liquids using the falling sphere method and a high-speed camera. I used different diameters of sphere starting from 2.5, 5, 10, 15 and 20 mm. What I want to prove using stokes law equation is that diameter of sphere doesn't affect viscosity of a liquid and it will stay the same. I guess it's okay if it has a little bit different viscosity for each diameter, however when I calculate using the stokes law formula, the difference is so big and when I compared it to the real viscosity of the liquid it's also so different. The liquid is water, which was supposed to have 0.001 Pas, but my calculated value is around 0.84 Pas. I need help, does diameter affect viscosity? if I'm not wrong it only affects the terminal velocity. How please??
 
Physics news on Phys.org
xenoidmaster said:
Homework Statement: I have recently conducted an experiment to measure the viscosity of some liquids using the falling sphere method and a high-speed camera. I used different diameters of sphere starting from 2.5, 5, 10, 15 and 20 mm. What I want to prove using stokes law equation is that diameter of sphere doesn't affect viscosity of a liquid and it will stay the same. I guess it's okay if it has a little bit different viscosity for each diameter, however when I calculate using the stokes law formula, the difference is so big and when I compared it to the real viscosity of the liquid it's also so different. The liquid is water, which was supposed to have 0.001 Pas, but my calculated value is around 0.84 Pas. I need help, does diameter affect viscosity? if I'm not wrong it only affects the terminal velocity. How please??
Relevant Equations: η = 2gr^2(d'– d)/9v
where:
v is the particles' terminal velocity velocity (m/s),
r is the radius of the sphere,
g is the gravitational acceleration,
d' is the density of the falling sphere,
d is the density of the liquid,
and η is the viscosity.

I have recently conducted an experiment to measure the viscosity of some liquids using the falling sphere method and a high-speed camera. I used different diameters of sphere starting from 2.5, 5, 10, 15 and 20 mm. What I want to prove using stokes law equation is that diameter of sphere doesn't affect viscosity of a liquid and it will stay the same. I guess it's okay if it has a little bit different viscosity for each diameter, however when I calculate using the stokes law formula, the difference is so big and when I compared it to the real viscosity of the liquid it's also so different. The liquid is water, which was supposed to have 0.001 Pas, but my calculated value is around 0.84 Pas. I need help, does diameter affect viscosity? if I'm not wrong it only affects the terminal velocity. How please??
What's the Reynolds number for the sphere falling in water? Stokes law is valid for laminar flow.

i.e. Does the velocity of the sphere as it falls match expectations for the equation of motion:

$$ m\dot v = mg - \beta v $$

Where ##\beta## is approximately constant?
 
  • Informative
Likes   Reactions: berkeman
Just to check, please post one set of values of all the measurements, quoting units.
 
  • Like
Likes   Reactions: erobz

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K