Viscosity by Falling Sphere Equations

  • Thread starter Thread starter xenoidmaster
  • Start date Start date
  • Tags Tags
    Viscosity
Click For Summary
An experiment was conducted to measure the viscosity of water using the falling sphere method with spheres of varying diameters (2.5 to 20 mm). The aim was to demonstrate that sphere diameter does not affect liquid viscosity, but the calculated viscosity was significantly higher than the expected 0.001 Pas, reaching around 0.84 Pas. This discrepancy raised questions about the influence of sphere diameter on viscosity and terminal velocity. Participants discussed the relevance of Stokes' law, emphasizing that it applies under laminar flow conditions and may not hold true at higher Reynolds numbers. Clarification on measurement values and conditions was requested to further analyze the results.
xenoidmaster
Messages
2
Reaction score
0
Homework Statement
I have recently conducted an experiment to measure the viscosity of some liquids using the falling sphere method and a high-speed camera. I used different diameters of sphere starting from 2.5, 5, 10, 15 and 20 mm. What I want to prove using stokes law equation is that diameter of sphere doesn't affect viscosity of a liquid and it will stay the same. I guess it's okay if it has a little bit different viscosity for each diameter, however when I calculate using the stokes law formula, the difference is so big and when I compared it to the real viscosity of the liquid it's also so different. The liquid is water, which was supposed to have 0.001 Pas, but my calculated value is around 0.84 Pas. I need help, does diameter affect viscosity? if I'm not wrong it only affects the terminal velocity. How please??
Relevant Equations
η = 2gr^2(d'– d)/9v
where:
v is the particles' terminal velocity velocity (m/s),
r is the radius of the sphere,
g is the gravitational acceleration,
d' is the density of the falling sphere,
d is the density of the liquid,
and η is the viscosity.
I have recently conducted an experiment to measure the viscosity of some liquids using the falling sphere method and a high-speed camera. I used different diameters of sphere starting from 2.5, 5, 10, 15 and 20 mm. What I want to prove using stokes law equation is that diameter of sphere doesn't affect viscosity of a liquid and it will stay the same. I guess it's okay if it has a little bit different viscosity for each diameter, however when I calculate using the stokes law formula, the difference is so big and when I compared it to the real viscosity of the liquid it's also so different. The liquid is water, which was supposed to have 0.001 Pas, but my calculated value is around 0.84 Pas. I need help, does diameter affect viscosity? if I'm not wrong it only affects the terminal velocity. How please??
 
Physics news on Phys.org
xenoidmaster said:
Homework Statement: I have recently conducted an experiment to measure the viscosity of some liquids using the falling sphere method and a high-speed camera. I used different diameters of sphere starting from 2.5, 5, 10, 15 and 20 mm. What I want to prove using stokes law equation is that diameter of sphere doesn't affect viscosity of a liquid and it will stay the same. I guess it's okay if it has a little bit different viscosity for each diameter, however when I calculate using the stokes law formula, the difference is so big and when I compared it to the real viscosity of the liquid it's also so different. The liquid is water, which was supposed to have 0.001 Pas, but my calculated value is around 0.84 Pas. I need help, does diameter affect viscosity? if I'm not wrong it only affects the terminal velocity. How please??
Relevant Equations: η = 2gr^2(d'– d)/9v
where:
v is the particles' terminal velocity velocity (m/s),
r is the radius of the sphere,
g is the gravitational acceleration,
d' is the density of the falling sphere,
d is the density of the liquid,
and η is the viscosity.

I have recently conducted an experiment to measure the viscosity of some liquids using the falling sphere method and a high-speed camera. I used different diameters of sphere starting from 2.5, 5, 10, 15 and 20 mm. What I want to prove using stokes law equation is that diameter of sphere doesn't affect viscosity of a liquid and it will stay the same. I guess it's okay if it has a little bit different viscosity for each diameter, however when I calculate using the stokes law formula, the difference is so big and when I compared it to the real viscosity of the liquid it's also so different. The liquid is water, which was supposed to have 0.001 Pas, but my calculated value is around 0.84 Pas. I need help, does diameter affect viscosity? if I'm not wrong it only affects the terminal velocity. How please??
What's the Reynolds number for the sphere falling in water? Stokes law is valid for laminar flow.

i.e. Does the velocity of the sphere as it falls match expectations for the equation of motion:

$$ m\dot v = mg - \beta v $$

Where ##\beta## is approximately constant?
 
Just to check, please post one set of values of all the measurements, quoting units.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K