- #1

- 26

- 1

## Main Question or Discussion Point

Hi all,

I think I know the answer to this question but I'm having trouble explaining why it is so.

If I have a circuit with a fixed resistor connected in parallel with a reverse biased diode, I believe the voltage drop across each will be the same. Is this correct? If so can someone explain the physics behind how this works? I get that there is a drop of voltage across the parallel section and that this means the voltage drop across both the resistor and the diode must be the same, but conceptually I have been thinking of a voltage drop as the energy that charge carriers "deposit" within a resistor as they pass through it, yet there should be no current flow through the reverse biased diode so how does energy drop across it?

Many thanks in advance!

I think I know the answer to this question but I'm having trouble explaining why it is so.

If I have a circuit with a fixed resistor connected in parallel with a reverse biased diode, I believe the voltage drop across each will be the same. Is this correct? If so can someone explain the physics behind how this works? I get that there is a drop of voltage across the parallel section and that this means the voltage drop across both the resistor and the diode must be the same, but conceptually I have been thinking of a voltage drop as the energy that charge carriers "deposit" within a resistor as they pass through it, yet there should be no current flow through the reverse biased diode so how does energy drop across it?

Many thanks in advance!