What causes electrons to move from the anode to the cathode in a galvanic cell?

  • Thread starter Thread starter Jimmy87
  • Start date Start date
  • Tags Tags
    Cells Voltage
AI Thread Summary
In a galvanic cell, electrons move from the anode to the cathode due to oxidation at the anode, creating a flow of electrons when a wire connects the two. The confusion arises from the notion of positive potential at the cathode, which is not strictly due to net charge but rather the electrochemical potential difference. Voltage is defined by the work needed to move a charge in an electric field, and while the cathode is positively charged, it does not possess a net positive charge in the same way a point charge does. The presence of an electric field between the two electrodes, influenced by their differing reactivities, facilitates the movement of electrons. Overall, the interactions and reactions at both electrodes contribute to the flow of electrons in the cell.
Jimmy87
Messages
692
Reaction score
19
In a galvanic cell, electrons are supplied by oxidation at the anode. I am struggling to find clarity on what makes the electrons move from the anode to the cathode when a wire is connected between the two. I have come across some texts on the internet that say the electrons are attracted to the positive potential (cathode) but they say that it is not strictly true to say that the electrons are attracted to the positively charged cathode. This has very much confused me. I thought you can only have a voltage when net charges are involved. If you have a positive point charge in space, then at a distance r away from this charge there will be a voltage - say 8 volts. This means it would take 8J to move a 1 coulomb test charge from infinity to that point. I was taught this concept of voltage to be the definition of voltage. So, how can electrons move to the cathode when it is not a source of net charge, i.e. there are no negative charges attracting it? Or even, how can the cathode be a source of positive potential without the notion of net charge?
 
Physics news on Phys.org
There is net charge. If you place a piece of metal into water it will become slightly charged. Usually negatively since the metal dissolves i.e. it looses positive metal ions which leaves excess electrons in the metal. So if you place a piece of zinc and copper in a cup of water both metals become charged negatively but since zinc reacts more strongly it gets a stronger charge. So in total you have an electric field between the two metals and therefore a voltage. This is however simplified. There are more reactions happening e.g. oxygen at the copper electrode reacting with OH- ions.
 
  • Like
Likes 1 person
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Back
Top