Volume of a sphere in Schwarzschild metric

tb87
Messages
8
Reaction score
1

Homework Statement


Calculate the volume of a sphere of radius ##r## in the Schwarzschild metric.

Homework Equations


I know that
\begin{align}
dV&=\sqrt{g_\text{11}g_\text{22}g_\text{33}}dx^1dx^2dx^3 \nonumber \\
&= \sqrt{(1-r_s/r)^{-1}(r^2)(r^2\sin^2\theta)} \nonumber
\end{align}
in the Schwarzschild metric.

The Attempt at a Solution


Well the integral I get for the sphere's volume,
\begin{equation}
V = \int dV \nonumber
\end{equation}
gives an imaginary volume! What's going on? Of course the volume will be imaginary because ##dV## is imaginary when ##r<r_s## (plus, there's a singularity at ##r=r_s##, which complicates things if we want to integrate up to the Schwarzschild radius). There's obviously something I'm missing here, but I have no idea what it is.
 
Last edited:
Physics news on Phys.org
Update : e-mailed my teacher and there's something we haven't time to see in class (Kruskal coordinates) that was required for this problem. -_-
 
  • Like
Likes berkeman
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top